首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
地球物理   6篇
天文学   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
2.
Landscapes evolve in complex, non‐linear ways over Quaternary timespans. Integrated geomorphological field studies usually yield plausible hypotheses about timing and impact of process activity. Landscape Evolution Models (LEMs) have the potential to test and falsify these landscape evolution hypotheses. Despite this potential, LEMs have mainly been used with hypothetical data and rarely to simulate the evolution of an actual landscape. In this paper, we use a LEM (LAPSUS: LandscApe ProcesS modelling at mUlti dimensions and scaleS) to explore if it is possible to test and falsify conclusions of an earlier field study on 50 ka landscape evolution in Okhombe Valley, KwaZulu Natal, South Africa. In this LEM, five landscape processes interact without supervision: water driven erosion and deposition, creep, solifluction, biological weathering and frost weathering. Calibration matched model results to three types of qualitative fieldwork observations: individual process activity over time, relative process activity over time and net landscape changes over time. Results demonstrate that landscape evolution of the Okhombe valley can be plausibly simulated. A particularly interesting and persistent feature of model results are erosional and depositional phases that lag climatic drivers both by decades, and by several ka within a few hundred meters. The longer lag has not been reported for this spatial scale before and may be an effect of slow landscape‐soil‐vegetation feedbacks. The combined modelling and fieldwork results allow a more complete understanding of these responses to climate change and can fill in hiatuses in the stratigraphical record. Suggestions are made for methodological adaptations for future LEM studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the potential contribution of tillage erosion to landscape development using LEM LAPSUS. The model is calibrated separately for a water erosion process (i) without tillage and (ii) with tillage. The model is applied to the ~250 km2 Torrealvilla case study catchment, SE Spain. We were able to simulate alternating sequences of incision and aggradation, that are important on longer (millennial) timescales. Generally, model results show that tillage erosion adds to deposition in the lower floodplain area, but neither water erosion alone nor water with tillage erosion together could exactly reproduce the observed amounts of erosion and sedimentation for the case study area. In addition, scale effects are apparent. On hillslopes, tillage may contribute importantly to erosion and may fill local depressions. If assessed on the catchment scale, sediments from tillage erosion eventually reach the lower floodplain area where they contribute to deposition. However, water erosion was observed in the model simulations to be the most important process on the catchment scale. This is the first time that tillage erosion has been explicitly included in a landscape evolution model at a millennial timescale and large catchment scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
Landscapes respond in complex ways to external drivers such as base level change due to damming events. In this study, landscape evolution modelling was used to understand and analyse long‐term catchment response to lava damming events. PalaeoDEM reconstruction of a small Turkish catchment (45 km2) that endured multiple lava damming events in the past 300 ka, was used to derive long‐term net erosion rates. These erosion rates were used for parameter calibration and led to a best fit parameter set. This optimal parameter set was used to compare net erosion landscape time series of four scenarios: (i) no uplift and no damming events; (ii) no uplift and three damming events; (iii) uplift and no damming events; and (iv) uplift and three damming events. Spatial evolution of net erosion and sediment storage of scenario (iii) and (iv) were compared. Simulation results demonstrate net erosion differences after 250 000 years between scenarios with and without dams. Initially, trunk gullies show less net erosion in the scenario with damming events compared with the scenario without damming events. This effect of dampened erosion migrates upstream to smaller gullies and local slopes. Finally, an intrinsic incision pulse in the dam scenario results in a higher net erosion of trunk gullies while decoupled local slopes are still responding to the pre‐incision landscape conditions. Sediment storage differences also occur on a 100 ka scale. These differences behaved in a complex manner owing to different timings of the migration of erosion and sediment waves along the gullies for each scenario. Although the specific spatial and temporal sequence of erosion and deposition events is sensitive to local parameters, this model study shows the manner in which past short‐lived events like lava dams have long‐lasting effects on catchment evolution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Sediment flux dynamics in fluvial systems have often been related to changes in external drivers of topography, climate or land cover. It is well known that these dynamics are non‐linear. Recently, model simulations of fluvial activity and landscape evolution have suggested that self‐organization in landscapes can also cause internal complexity in the sedimentary record. In this contribution one particular case of self‐organization is explored in the Sabinal field study area, Spain, where several dynamic zones of sedimentation and incision are observed along the current river bed. Whether these zones can be caused by internal complexity was tested with landscape evolution model (LEM) LAPSUS (Landscape Process Modelling at Multi‐dimensions and Scales). During various 500 year simulations, zones of sedimentation appear to move upstream and downstream in eroding river channels (‘waves’). These waves are visualized and characterized for a range of model settings under constant external forcing, and the self‐organizing process behind their occurrence is analysed. Results indicate that this process is not necessarily related to simplifications in the model and is more generic than the process of bed‐armouring that has recently been recognized as a cause for complexity in LEM simulations. We conclude that autogenic sediment waves are the result of the spatial propagation in time of feedbacks in local transport limited (deposition) and detachment limited (erosion) conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号