首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
海洋学   1篇
自然地理   1篇
  2019年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 171 毫秒
1
1.
不同结构的尼龙网和塑料网防沙效应研究   总被引:16,自引:8,他引:8  
通过不同结构的尼龙网和塑料网对风沙流减弱作用的风洞实验研究,旨在为探求各种防沙新材料的防护功能,并为防沙新材料的开发、野外工程防沙的优化设计及其应用提供理论依据。笔者在前人研究的基础上,以平均净阻沙率、网后平均输沙率和风沙流动态变化趋势为参考指标,初步证实了尼龙网和塑料网与常规的防沙材料,在防沙功能上具有同等的作用,且当孔隙度β在40%左右时防护效益最佳。  相似文献   
2.
Plastic debris ingestion by marine catfish: an unexpected fisheries impact   总被引:1,自引:0,他引:1  
Plastic marine debris is a pervasive type of pollution. River basins and estuaries are a source of plastics pollution for coastal waters and oceans. Estuarine fauna is therefore exposed to chronic plastic pollution. Three important catfish species [Cathorops spixii (N = 60), Cathorops agassizii (N = 60) and Sciades herzbergii (N = 62)] from South Western Atlantic estuaries were investigated in a tropical estuary of the Brazilian Northeast in relation to their accidental ingestion of plastic marine debris. Individuals from all three species had ingested plastics. In C. spixii and C. agassizii, 18% and 33% of individuals had plastic debris in their stomachs, respectively. S. herzbergii showed 18% of individuals were contaminated. All ontogenetic phases (juveniles, sub-adults and adults) were contaminated. Nylon fragments from cables used in fishery activities (subsistence, artisanal and commercial) played a major role in this contamination. These catfish spend their entire life cycles within the estuary and are an important feeding resource for larger, economically important, species. It is not yet possible to quantify the scale and depth of the consequences of this type of pollution. However, plastics are well known threat to living resources in this and other estuaries. Conservation actions will need to from now onto take plastics pollution into consideration.  相似文献   
3.
As current attention of the offshore industry is drawn by developing pilot farms of Floating Wind Turbines (FWTs) in shallow-water between 50m and 100m, the application of nylon as a mooring component can provide a more cost-effective design. Indeed, nylon is a preferred candidate over polyester for FWT mooring mainly because of its lower stiffness and a corresponding capacity of reducing maximum tensions in the mooring system. However, the nonlinear behaviors of nylon ropes (e.g. load-elongation properties, fatigue characteristics, etc.) complicate the design and modeling of such structures. Although previous studies on the mechanical properties and modeling of polyester may be very good references, those can not be applied directly for nylon both on testing and modeling methods. In this study, first, an empirical expression to determine the dynamic stiffness of a nylon rope is drawn from the testing data in the literature. Secondly, a practical modeling procedure is suggested by the authors in order to cope with the numerical mooring analysis for a semi-submersible type FWT taking into account the dynamic axial stiffness of nylon ropes. Both the experimental and numerical results show that the tension amplitude has an important impact on the dynamic stiffness of nylon ropes and, as a consequence, the tension responses of mooring lines. This effect can be captured by the present modeling procedure. Finally, time domain mooring analysis for both Ultimate Limit State (ULS) and Fatigue Limit State (FLS) is performed to illustrate the advantages and conservativeness of the present approach for nylon mooring modeling.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号