首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   2篇
  2012年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
We use a total of 839,369 PcP, PKPab, PKPbc, PKPdf, PKKPab, and PKKPbc residual travel times from [Bull. Seism. Soc. Am. 88 (1998) 722] grouped in 29,837 summary rays to constrain lateral variation in the depth to the core-mantle boundary (CMB). We assumed a homogeneous outer core, and the data were corrected for mantle structure and inner-core anisotropy. Inversions of separate data sets yield amplitude variations of up to 5 km for PcP, PKPab, PKPbc, and PKKP and 13 km for PKPdf. This is larger than the CMB undulations inferred in geodetic studies and, moreover, the PcP results are not readily consistent with the inferences from PKP and PKKP. Although the source-receiver ambiguity for the core-refracted phases can explain some of it, this discrepancy suggest that the travel-time residuals cannot be explained by topography alone. The wavespeed perturbations in the tomographic model used for the mantle corrections might be too small to fully account for the trade off between volumetric heterogeneity and CMB topography. In a second experiment we therefore re-applied corrections for mantle structure outside a basal 290 km-thick layer and inverted all data jointly for both CMB topography and volumetric heterogeneity within this layer. The resultant CMB model can explain PcP, PKP, and PKKP residuals and has approximately 0.2 km excess core ellipticity, which is in good agreement with inferences from free core nutation observations. Joint inversion yields a peak-to-peak amplitude of CMB topography of about 3 km, and the inversion yields velocity variations of ±5% in the basal layer. The latter suggests a strong trade-off between topography and volumetric heterogeneity, but uncertainty analyses suggest that the variation in core radius can be resolved. The spherical averages of all inverted topographic models suggest that the data are best fit if the actual CMB radius is 1.5 km less than in the Earth reference model used (i.e. the average outer core radius would be 3478 km).  相似文献   
2.
Clear PKKP, a P wave reflects off the core-mantle boundary on the core side, is recorded by the transcontinental USArray from two deep earthquakes occurred in South America and Tonga, and one intermediate-depth earthquake in the Hindu Kush region. We compare the PKKP waveforms with the direct P waves to investigate the fine structures near the core-mantle boundary, with a primary focus on the core side. We find no evidence for the existence of a sedimentary layer of lighter elements with a thickness above a few hundreds of meters beneath the reflection points of the two deep events, which are located at the Ninety-East Ridge and South Africa. On the other hand the PKKP wave duration of the Hindu Kush event is almost twice as long as that of the P wave, suggesting that multiple reflections may be occurring at the core-mantle boundary located beneath the Antarctic, which is located inside the so-called tangent cylinder of the outer core. The tangent cylinder is an imaginary cylindrical region suggested by geodynamics studies, which has different flow pattern and may have a higher concentration in lighter elements as compared to the rest of the outer core. One possible explanation of the elongated PKKP is a thin distinct layer with a thickness of a few kilometers at the top of the outer core, suggesting that precipitation of lighter elements may occur at the core-mantle boundary. Our data also indicate an extremely low QP of 312, approximately 40% of the PREM average (~780), within the large-scale low-velocity anomaly in the lowermost mantle beneath Pacific.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号