首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
地球物理   3篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Land seismic data quality can be severely affected by near‐surface anomalies. The imprint of a complex near‐surface can be removed by redatuming the data to a level below the surface, from where the subsurface structures are assumed to be relatively smooth. However, to derive a velocity‐depth model that explains the propagation effects of the near‐surface is a non‐trivial task. Therefore, an alternative approach has been proposed, where the redatuming operators are obtained in a data‐driven manner from the reflection event related to the datum. In the current implementation, the estimation of these redatuming operators is done in terms of traveltimes only, based on a high‐frequency approximation. The accompanying amplitudes are usually derived from a local homogeneous medium, which is obviously a simplification of reality. Such parametrization has produced encouraging results in the past but cannot completely remove the near‐surface complexities, leaving artefacts in the redatumed results. In this paper we propose a method that estimates the redatuming operators directly from the data, i.e., without using a velocity model, in a full waveform manner, such that detailed amplitude and phase variations are included. The method directly outputs the inverse propagation operators that are needed for true‐amplitude redatuming. Based on 2D synthetic data it is demonstrated that the resulting redatuming quality is improved and artefacts are reduced.  相似文献   
2.
Near‐surface problem is a common challenge faced by land seismic data processing, where often, due to near‐surface anomalies, events of interest are obscured. One method to handle this challenge is near‐surface layer replacement, which is a wavefield reconstruction process based on downward wavefield extrapolation with the near‐surface velocity model and upward wavefield extrapolation with a replacement velocity model. This requires, in theory, that the original wavefield should be densely sampled. In reality, data acquisition is always sparse due to economic reasons, and as a result in the near‐surface layer replacement data interpolation should be resorted to. For datasets with near‐surface challenges, because of the complex event behaviour, a suitable interpolation scheme by itself is a challenging problem, and this, in turn, makes it difficult to carry out the near‐surface layer replacement. In this research note, we first point out that the final objective of the near‐surface layer replacement is not to obtain a newly reconstructed wavefield but to obtain a better final image. Next, based upon this finding, we propose a new thinking, interpolation‐free near‐surface layer replacement, which can handle complex datasets without any interpolation. Data volume expansion is the key idea, and with its help, the interpolation‐free near‐surface layer replacement is capable of preserving the valuable information of areas of interest in the original dataset. Two datasets, i.e., a two‐dimensional synthetic dataset and a three‐dimensional field dataset, are used to demonstrate this idea. One conclusion that can be drawn is that an attempt to interpolate data before layer replacement may deteriorate the final image after layer replacement, whereas interpolation‐free near‐surface layer replacement preserves all image details in the subsurface.  相似文献   
3.
结合基准面重建的叠前时间偏移方法   总被引:1,自引:1,他引:0       下载免费PDF全文
董春晖  张剑锋 《地球物理学报》2010,53(10):2435-2441
提出了一种结合虚拟界面、瑞利积分和相移法的混合的基准面重建方法.通过与叠前时间偏移方法结合,形成了针对起伏地表采集数据的叠前时间偏移方法和新流程.该方法能正确考虑波在近地表传播的实际路径,克服了高速层出露时静校正方法的误差;它也能自己确定虚拟层速度,避免了现行基于波场延拓的基准面重建方法需要准确近地表速度的困难.文中分别用近地表存在明显低速层和近地表有高速层出露这两类模型的理论数据,验证了所发展方法和流程的有效性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号