首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Dissolved organic carbon (DOC) distributions in water from Lake Ipê, MS, Brazil, were investigated. The samplings were performed monthly (surface, 1 m depth, and bottom) from June 1999 to June 2000. Absorbance at 285 nm and DOC concentrations in mg dm—3, p(DOC), were highly correlated for the three depths. 77% of the surface, 85% for 1 m and bottom samples presented a variation between 20 dm3 g—1 cm—1 and 50 dm3 g—1 cm—1 of A(285 nm)/p(DOC), that characterizes the dissolved organic matter in lake water as essentially fulvic. The ratio A(254 nm)/p(DOC) was also sensitive for fulvic matter, and an A(250 nm)/A(365 nm) = 4 ratio was characteristic of strongly colored waters. The ratios A(436 nm)/p(DOC) for the three depths also showed a significant correlation. The predominance of fulvic acid is explained by environmental characteristics such as the tropical climate, temperatures above 18 °C, and the lake environment. It was demonstrated that the variation in the water carbon content due to different compartments in the lake can be monitored by UV‐vis spectroscopy ratios.  相似文献   
2.
The optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Meiliang Bay of Lake Taihu were evaluated and compared to the results in literature. Concentrations of dissolved organic carbon (DOC) ranged from 8.75 to 20.19 mg L?1 with an average of (13.10 ± 3.51) mg L?1. CDOM absorption coefficients a(λ) at 280 nm, 355 nm, and 440 nm were in the range 11.28...33.46 m?1 (average (20.95 ± 5.52) m?1), 2.42...7.90 m?1 (average (4.92 ± 1.29) m?1), and 0.65...2.44 m?1 (average (1.46 ± 0.44) m?1), respectively. In general, CDOM absorption coefficient and DOC concentration were found to decrease away from the river inflow to Meiliang Bay towards the lake center. The values of the DOC‐specific absorption coefficients a*(λ), given as absorption coefficient related to mass concentration of organic carbon (C) ranged from 0.28 to 0.47 L mg?1 m?1 at 355 nm. The determination coefficients between CDOM absorption and DOC concentration decreased with the increase of wavelength from 280 to 550 nm. The linear regression relationship between CDOM absorption at 280 nm and DOC concentration was following: a(280 nm) = 1.507 L mg?1 m?1 · DOC + 1.215 m?1. The spectral slope S values were dependent on the wavelength range used in the regression. The estimated S values decreased with increasing wavelength range used. A significant negative linear relationship was found between CDOM absorption coefficients, DOC‐specific absorption coefficients and estimated S values especially in longer wavelength range. The linear regression relationship between DOC‐specific absorption coefficients at 440 nm and estimated S values during the wavelength range from 280 to 500 nm was following: a*(440 nm) = (–0.021 μm · S + 0.424) L mg?1 m?1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号