首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   42篇
  国内免费   27篇
测绘学   138篇
大气科学   5篇
地球物理   73篇
地质学   15篇
海洋学   184篇
天文学   10篇
综合类   47篇
自然地理   27篇
  2022年   8篇
  2021年   8篇
  2020年   11篇
  2019年   14篇
  2018年   6篇
  2017年   17篇
  2016年   16篇
  2015年   34篇
  2014年   20篇
  2013年   65篇
  2012年   16篇
  2011年   10篇
  2010年   15篇
  2009年   16篇
  2008年   27篇
  2007年   29篇
  2006年   19篇
  2005年   19篇
  2004年   32篇
  2003年   27篇
  2002年   8篇
  2001年   20篇
  2000年   11篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   9篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1954年   1篇
排序方式: 共有499条查询结果,搜索用时 500 毫秒
1.
Fukai Peng 《Marine Geodesy》2018,41(2):99-125
A new Brown-Peaky (BP) retracker has been developed for peaky waveforms that usually appear within ~10 km to the coastline. The main feature of the BP is that it fits peaky waveforms using the Brown model without introducing a peak function. The retracking strategy first detects the peak location and width of a waveform using an adaptive peak detection method, and then estimates retracking parameters using a weighted least squares (WLS) estimator. The WLS assigns a downsized weight to corrupted waveform gates, but an equal weight to other normal waveform gates. The BP retracker has been applied to 4-year Jason-1 waveform (2002–2006) in two Australian coastal zones. The results retracked by BP, MLE4 and ALES retrackers have been validated against tide-gauge observations located at Burnie, Lorne and Broome. The comparison results show that three retrackers have similar performance over open oceans with the correlation coefficient (~0.7) and RMSE (~13 cm) between altimetric and tide-gauge sea levels for distance >7 km offshore. The main improvement of BP retracker occurs for distance ≤7 km to the coastline, where validation results indicate that data retracked by BP are more accurate (15–21 cm) than those by ALES (16–24 cm) and MLE4 (19–37 cm).  相似文献   
2.
This article describes absolute calibration results for both JASON-1 and TOPEX Side B (TSB) altimeters obtained at the Lake Erie calibration site, Marblehead, Ohio, USA. Using 15 overflights, the estimated JASON altimeter bias at Marblehead is 58 ± 38 mm, with an uncertainty of 19 mm based on detailed error analysis. Assuming that the TSB bias is negligible, relative bias estimates using both data from the TSB-JASON formation flight period and data from 48 water level gauges around the entire Great Lakes confirmed the Marblehead results. Global analyses using both the formation flight data and dual-satellite (TSB and JASON) crossovers yield a similar relative bias estimate of 146 ± 59 mm, which agrees well with open ocean absolute calibration results obtained at Harvest, Corsica, and Bass Strait (e.g., Watson et al. 2003). We find that there is a strong dependence of bias estimates on the choice of sea state bias (SSB) models. Results indicate that the invariant JASON instrument bias estimated oceanwide is 71 mm, with additional biases of 76 mm or 28 mm contributed by the choice of Collecte Localisation Satellites (CLS) SSB or Center for Space Research (CSR) SSB model, respectively. Similar analysis in the Great Lakes yields the invariant JASON instrument bias at 19 mm, with the SSB contributed biases at 58 mm or 13 mm, respectively. The reason for the discrepancy is currently unknown and warrants further investigation. Finally, comparison of the TOPEX/POSEIDON mission (1992-2002) data with the Great Lakes water level gauge measurements yields a negligible TOPEX altimeter drift of 0.1 mm/yr.  相似文献   
3.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
利用卫星测高技术监测厄尔尼诺和拉尼娜现象   总被引:2,自引:0,他引:2  
利用美国宇航局和法国空间局联合公布的T/P数据(1993-2000年)和Jason-1数据(2002—2006年),由共线法计算了热带太平洋地区海平面高度的变化。根据T/P和Jason-1数据计算的海面月变化异常图,分别研究了和分析了1997-1998年的厄尔尼诺和拉尼娜现象、2002-2003年厄尔尼诺现象的变化发展过程。  相似文献   
5.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   
6.
The radiometers on board the satellites ERS-1, TOPEX/Poseidon, ERS-2, GFO, Jason-1, and Envisat measure brightness temperatures at two or three different frequencies to determine the total columnal water vapor content and wet tropospheric path delay, a major correction to the altimeter range measurements. In order to asses the long-term stability of the path delay, the radiometers are calibrated against vicarious cold and hot references, against each other, and against several atmospheric models. Four of these radiometers exhibit significant drifts in at least one of the channels, resulting in yet unmodeled errors in path delay of up to 1 mm/year, thus limiting the accuracy at which global sea level rise can be inferred from the altimeter range measurements.  相似文献   
7.
As part of the Vertical Offshore Reference Frames (VORF) project sponsored by the U. K. Hydrographic Office, a new model for Sea Surface Topography (SST) around the British Isles has been developed. For offshore areas (greater than 30 km from the coast), this model is largely derived from satellite altimetry. However, its accuracy and level of detail have been enhanced in coastal areas by the inclusion of not only the 60 PSMSL tide gauges with long-term records around the coasts of the United Kingdom and Ireland but also some 385 gauges established at different epochs and for different observation spans by the U. K. Admiralty. All tide gauge data were brought into a common reference frame by a combination of datum models and direct GPS observations, but a more significant challenge was to bring all short-term sea level observations to an unbiased value at a common epoch. This was achieved through developing a spatial-temporal correlation model for the variations in mean sea level around the British Isles, which in turn meant that gauges with long-term observation spans could be used as control points to improve the accuracy of Admiralty gauges. It is demonstrated that the latter can contribute point observations of mean sea level (MSL) with a precision of 0.078 m. A combination of least squares collocation and interpolation was developed to merge the coastal point and offshore gridded data sets, with particular algorithms having to be developed for different configurations of coastal topology. The resulting model of sea surface topography is shown to present a smooth transition from inshore coastal areas to offshore zones. Further benefits of the techniques developed include an enhanced methodology for detecting datum discontinuities at permanent tide gauges.  相似文献   
8.
Seasonal and interannual variations in the East Sakhalin Current (ESC) are investigated using ten-year records of the sea level anomaly (SLA) observed by the TOPEX/POSEIDON (T/P) altimeter. The T/P SLA clearly documents seasonal and interannual variations in the ESC along the east coast of Sakhalin Island, although sea ice masks the region from January to April. Estimates of surface current velocity anomaly derived from T/P SLA are in good agreement with drifting buoy observations. The ESC is strong in winter, with a typical current velocity of 30–40 cm s−1 in December, and almost disappears in summer. Southward flow of the ESC is confined to the shelf and slope region and consists of two velocity cores. These features of the ESC are consistent with short-term observations reported in previous studies. Analysis of the ten-year records of T/P SLA confirms that the structure of the ESC is maintained each winter and the seasonal cycle is repeated every year, although the strength of the ESC shows large interannual variations. Seasonal and interannual variations in the ESC are discussed in relation to wind-driven circulation in the Sea of Okhotsk, using wind stress and wind stress curl fields derived from European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis data and a scatterometer-derived wind product. Seasonal and interannual variations of the anticyclonic eddy in the Kuril Basin are also revealed using T/P SLA.  相似文献   
9.
10.
给出了提取潮汐调和常数的一种新方法--正交方法,并应用1992~1997年的TOPEX/POSEIDON卫星高度计遥感资料,提取中国海M2分潮调和常数.同时,利用最小二乘法来提取中国海M2分潮调和常数,两种方法结果比较渤海、黄海、东海海域M2分潮振幅、迟角的均方差分别是3.3 cm,3.6°;南中国海海域M2分潮振幅、迟角均方差分别是1.1 cm,1.7°,结果表明正交方法是一种可信的具有实用性的方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号