首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   10篇
测绘学   1篇
地球物理   24篇
地质学   7篇
海洋学   1篇
自然地理   6篇
  2020年   4篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
An analysis is undertaken to develop techniques to remotely sense relative evapotranspiration outputs in the distal Okavango Delta using enhanced thematic mapper and ground based techniques to help quantify water loss. Much of this work focuses on riparian woodlands which, especially in the distal portion of the Delta, are regarded as being significant in terms of groundwater removal by transpiration. This was confirmed as vegetation cover mapping led to the identification of two riparian classes which, by association with high resistivity aeromagnetic data, were found to be rooted in near surface fresh groundwater. This paper indicates that riparian trees which remain green year long, partly sustain their growth as a result of groundwater uptake. A comparison of frequently flooded and dry floodplains with distinct riparian zones was undertaken using spectral techniques (pixel radiance values and leaf water content indices) to determine whether flooding and lateral groundwater flow stimulated growth (and therefore transpiration rate) following dormancy. Results indicate a basic similarity between the two systems with mixed evidence of assumed leaf growth. Related phenological observations in the riparian zone of the dry floodplain show that renewal of leaf growth is primarily related to rainfall, not flood events in the distal Delta. The results of this work should help effect both surface and groundwater management in the vicinity of population centres in the distal Delta.  相似文献   
2.
Irigaray  C.  Fernández  T.  Chacón  J. 《Natural Hazards》2003,30(3):309-324
This paper aims to examine the impact of large-scale structuraladjustments (like the Greater Dhaka Flood Protection Project, GDFPP) on local living environment.It focuses the importance of environmental factors in flood hazard mitigation, and examines theenvironmental attitudes of the floodplain residents arising from the large-scale structural adjustments.Based on `perceived natural hazard research perspectives', this paper examines: (i) the reasons for persistentfloodplain occupation, and (ii) the importance of environmental factors in the choice, motivations and decision-makingof floodplain residents.This research used data collected from 300 households situated inthe eastern part of Dhaka. The face-to-face household survey data provided individuals' responses to a structuredquestionnaire on hazards and environment. Survey concerned urban floodplains, and looked fordata on housing, household characteristics, and residents' attitudes. Results of interview surveys wereused to: (i) explore the reasons of floodplain occupation, and (ii) residents' attitudes to tolerable levelof flood risk and willingness to accept environmental change resulting from the proposed structural embankments inthe eastern perimeter of Dhaka City, Bangladesh.Findings revealed that floodplain occupation (by theindividuals' decision-making) was a result of overall reaction to the Government's structuraladjustment policies that resulted from institutional, locational and socio-economic factors. The attitude survey results provided residents' perception to hazards and environment to be dependenton the socio-economic factors – but in a complex manner, many factors are interrelated.In addition to support for structural embankments, the study sample displayed a common concernand widespread environmental awareness. In terms of any `trade-off' between thebenefits (resources) from the embankments and costs (hazards) due to the detrimental impact on environment, the residents of Dhaka, despite some concern forsacrificing embankments for environment, tended to show a generalconsensus for embankments.  相似文献   
3.
Parts of the flood plains north of the Harz Mountains are contaminated with heavy metals, such as Pb, Cu, Zn and Cd derived from mining, which has been carried out in the Harz Mts. since the Middle Ages. It is important to know the mobility of the heavy metals in these overbank sediments in order to estimate the danger to the environment arising from this source. This paper deals with the effect of pH on heavy-metal mobility, using a constant-pH method. The investigations were carried out on an overbank sediment profile near Salzgitter Bad, north of the Harz Mts. The mobility of the heavy metals in the overbank sediment profile is described as a function of pH and depth. Besides the mobile heavy-metal fraction at a certain pH, the buffering capacity of the sediment at this pH must be taken into consideration. The different layers of the overbank sediment profile show distinct differences in buffering capacity and a natural pH harrier could be identified in the upper part of the profile. Therefore, to avoid increasing heavy-metal mobility the natural layering of the overbank sediment profile should not be disturbed. Two different kinds of desorption experiments at constant pH are also discussed, as well as the conversion of the heavy-metal species in the ore minerals into the species in the sediment.  相似文献   
4.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Willow communities dominate mid‐elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate‐driven variations in hydrologic regime affect future willow establishment? We precisely aged willows on the three most common fluvial landforms, stream point bars, drained beaver ponds, and abandoned channels, and statistically related establishment dates to patterns of annual stream peak flow. The role of peak flow on willow establishment varied significantly by landform. Willow recruitment had occurred nearly every year on point bars. In former beaver complexes, most willows had established following dam breaches, whereas willows had established on abandoned channels for several years following channel avulsion. Establishment on point bars and abandoned channels was driven by peak flows of 2‐ to 5‐year return intervals, whereas in abandoned beaver ponds most establishment was associated with flow events of >5‐year return interval. Models of climate change suggest that temperatures will increase and precipitation seasonality will shift over the coming decades in the Rocky Mountains, leading to earlier spring runoff, lower summer and fall flows, decreased snowpack and decreased soil moisture. Such changes are likely to diminish opportunities for willow establishment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
Patterns of overbank sedimentation in the vicinity of, and far removed from, levee breaks that occurred in response to the >100 year, summer 1993 flood in the upper Mississippi River valley are elucidated. Two suites of overbank deposits were associated with the failure of artificial levees within a 70 km long study reach. Circumjacent sand deposits are a component of the levee break complex that develops in the immediate vicinity of a break site. As epitomized by the levee break complex at Sny Island, these features consist of an erosional, scoured and/or stripped zone, together with a horseshoe-shaped, depositional zone. At locales farther removed from the break site, the impact of flooding was exclusively depositional and was attributed to the settling of suspended sediment from the water column. The overall picture was one of modest scour at break sites and minimal suspended deposition (<4 mm) at locales farther removed from the breach. Downriver from the confluence with the Missouri River, suspended sediment deposition was of a similar magnitude to that observed within the study reach and levee break complexes exhibited a similar morphology, but scour at break sites was greatly enhanced and the excavated sand formed extensive deposits on the floodplain surface. The different erosional response was probably engendered by the higher sand content and reduced aggregate cohesion of the floodplain soils downriver from the confluence with the Missouri River. A qualitative comparison serves to highlight the influence that the resistance threshold may have on the sensitivity of floodplains bordering large low-gradient rivers to high magnitude floods. © 1997 John Wiley & Sons, Ltd.  相似文献   
8.
复式河道滩地植物对水流紊动结构影响的试验研究   总被引:9,自引:0,他引:9  
利用室内变坡水槽,精细模拟了复式河道滩地不同植物对漫滩水流的干扰作用,并借助声学多普勒测速仪(ADV)观测了不同垂线、不同测点的瞬时流速,计算了水质点三维相对紊动强度,分析了其变化特征,探讨了滩地不同种类植物对水流内部结构的影响。试验发现,滩地植物改变了复式河道水流内部结构,导致植物带内近床面处各个方向水流相对紊动强度明显减弱,横向因植物丛内阻力和流速变化引起的滩区壅水导致横比降增加,主槽相对紊动强度显著增强;植物淹没条件下水流相对紊动强度沿水深的分布明显存在转折点,此位置可以认为是滩地植物对水流影响的“第二边界”。  相似文献   
9.
In floodplains, anthropogenic features such as levees or road scarps, control and influence flows. An up‐to‐date and accurate digital data about these features are deeply needed for irrigation and flood mitigation purposes. Nowadays, LiDAR Digital Terrain Models (DTMs) covering large areas are available for public authorities, and there is a widespread interest in the application of such models for the automatic or semiautomatic recognition of features. The automatic recognition of levees and road scarps from these models can offer a quick and accurate method to improve topographic databases for large‐scale applications. In mountainous contexts, geomorphometric indicators derived from DTMs have been proven to be reliable for feasible applications, and the use of statistical operators as thresholds showed a high reliability to identify features. The goal of this research is to test if similar approaches can be feasible also in floodplains. Three different parameters are tested at different scales on LiDAR DTM. The boxplot is applied to identify an objective threshold for feature extraction, and a filtering procedure is proposed to improve the quality of the extractions. This analysis, in line with other works for different environments, underlined (1) how statistical parameters can offer an objective threshold to identify features with varying shapes, size and height; (2) that the effectiveness of topographic parameters to identify anthropogenic features is related to the dimension of the investigated areas. The analysis also showed that the shape of the investigated area has not much influence on the quality of the results. While the effectiveness of residual topography had already been proven, the proposed study underlined how the use of entropy can anyway provide good extractions, with an overall quality comparable to the one offered by residual topography, and with the only limitation that the extracted features are slightly wider than the investigated one. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
The Mekong floodplains, which encompasses the region from Kratie Township in Central Cambodia to the Vietnamese East Sea, is a region of globally renown agricultural productivity and biodiversity. The construction of 135 dams across the Mekong basin and the development of delta‐based flood prevention systems have caused public concern given possible threats on the stability of agricultural and ecological systems in the floodplains. Mekong dams store water upstream and regulate flow seasonality, while in situ flood prevention systems re‐distribute water retention capacity in the floodplains. The main aim of this paper is to evaluate possible impacts of the recent development of both hydropower dams and flood prevention systems on hydrological regimes in the Mekong floodplains. An analysis of measured daily and hourly water level data for key stations in the Mekong floodplains from Kratie to the river mouth in Vietnam was conducted. Hydropower dam information was obtained from the hydropower database managed by the Mekong River Commission, and the MODIS satellite imagery was used to detect changes in flooding extent related to the operation of flood prevention systems in the Vietnam Mekong Delta. Results indicate that the upper part of the floodplains, the Cambodian floodplains, may buffer upstream dam impacts to the Vietnam Mekong Delta. Flood prevention up to date has had the greatest effect on the natural hydrological regime of the Mekong floodplains, evidenced by a significant increase of water level rise and fall rates in the upper delta and causing water levels in the middle delta to increase. The development of flood prevention systems has also effected spatial distribution of flooding as indicated via a time series analysis of satellite imagery. While this development leads to increase localized agricultural productivity, our historical data analysis indicates that development of one region detrimentally affects other regions within the delta, which could increase the risk of future conflicts among regions, economic sectors and the ecological value of these important floodplains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号