首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   46篇
  国内免费   52篇
测绘学   4篇
大气科学   23篇
地球物理   130篇
地质学   82篇
海洋学   148篇
综合类   28篇
自然地理   33篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   20篇
  2020年   15篇
  2019年   18篇
  2018年   6篇
  2017年   13篇
  2016年   19篇
  2015年   11篇
  2014年   18篇
  2013年   67篇
  2012年   23篇
  2011年   16篇
  2010年   18篇
  2009年   21篇
  2008年   21篇
  2007年   13篇
  2006年   20篇
  2005年   12篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   11篇
  2000年   11篇
  1999年   4篇
  1998年   5篇
  1997年   16篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1985年   2篇
  1982年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有448条查询结果,搜索用时 566 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
A dry (1979–1980) and a wet (1980–1981) season had a marked effect on the freshwater inflow into the Keiskamma estuary. Under low inflow conditions, which results in elevated salinities in the upper reaches, an upstream migration of adult Macrobrachium petersi (Hilgendorf) to freshwater takes place. During periods of increased river inflow adult M. petersi move downstream to the more saline reaches of the estuary. These two migratory responses have been interpreted as (a) a breeding migration under high inflow conditions which ensures that larvae are in close proximity to salinities that favour growth and development, and (b) an adult upstream migration back to freshwater to escape elevated estuarine salinities as a result of the low freshwater inflow.  相似文献   
3.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
5.
We used stable C and N isotope ratios of tissues from 29 fish species from a large subtropical lagoon in southern Brazil to examine spatial variability in isotopic composition and vertical trophic structure across freshwater and estuarine habitats. Nitrogen isotope ratios indicated a smooth gradation in trophic positions among species, with most fishes occupying the secondary and tertiary consumer level. Fish assemblages showed a significant shift in their carbon isotopic signatures between freshwater and estuarine sites. Depleted carbon signatures (from −24.7‰ to −17.8‰) were found in freshwater, whereas more enriched signatures (from −19.1‰ to −12.3‰) were obtained within the estuarine zone downstream. Based on our survey of the C3 and C4 plants and isotopic values for phytoplankton and benthic microalgae reported for ecosystems elsewhere, we hypothesized that the observed δ13C differences in the fish assemblage between freshwater and estuarine sites is due to a shift from assimilating organic matter ultimately derived from C3 freshwater marsh vegetation and phytoplankton at the freshwater site (δ13C ranging from −25‰ to −19‰), to C4 salt-marsh (e.g. Spartina) and widgeon grass (Ruppia maritima), benthic microalgae and marine phytoplankton at the estuarine sites (from −18‰ to −12‰). Our results suggested that fish assemblages are generally supported by autochthonous primary production. Freshwater fishes that likely were displaced downstream into the estuary during periods of high freshwater discharge had depleted δ13C values that were characteristic of the upper lagoon. These results suggest that spatial foodweb subsidies can occur within the lagoon.  相似文献   
6.
We studied how the extensive diversion of Colorado River water, induced by dams and agricultural activities of the last 70 years, affected the growth rates of two abundant bivalve mollusk species (Chione cortezi and Chione fluctifraga) in the northern Gulf of California. Shells alive on the delta today (‘Post-dam’ shells) grow 5.8–27.9% faster than shells alive prior to the construction of dams (‘Pre-dam’ shells). This increase in annual shell production is linked to the currently sharply reduced freshwater influx to the Colorado River estuary. Before the upstream river management, lower salinity retarded growth rates in these bivalves. Intra-annual growth rates were 50% lower during spring and early summer, when river flow was at its maximum. Growth rates in Chione today are largely controlled by temperature and nutrients; prior to the construction of dams and the diversion of the Colorado River flow, seasonal changes in salinity played an important role in regulating calcification rates.Our study employs sclerochronological (growth increment analysis) and geochemical techniques to assess the impact of reduced freshwater influx on bivalve growth rates in the Colorado River estuary. A combination of both techniques provides an excellent tool to evaluate the impact of river management in areas where no pre-impact studies were made.  相似文献   
7.
Quantity, timing, duration, and fluctuation of freshwater inflow are important factors affecting the development and health of aquatic and adjacent wetland ecosystems in coastal estuaries. This study assessed six decades of freshwater inflow from the Amite River, Tickfaw River, and Tangipahoa River watersheds to Lake Pontchartrain, a large oligohaline estuary in the Northern Gulf of Mexico, whose flood waters caused recent damage to the city of New Orleans in the aftermath of Hurricane Katrina. By utilizing the long-term (1940–2002) river discharge and climatic data from the three major tributary watersheds, monthly and annual freshwater inflows have been quantified and their spatial and temporal variations have been analyzed. On average, the three rivers discharged (±standard error) 0.27 ± 0.04 km3 freshwater monthly and 3.29 ± 0.15 km3 freshwater annually into the lake estuarine system, with the highest inflow from the Amite River (0.16 ± 0.03 m3 mon−1, and 1.91 ± 0.09 km3 yr−1) and the lowest inflow from the Tickfaw River (0.03 ± 0.00 km3 mon−1, and 0.34 ± 0.02 km3 yr−1). A distinct seasonality was evident with over 69% of the total annual inflow occurring during December and May (wet months) and with a low flow period from August to November (dry months). The monthly inflow during the wet months was positively correlated with the monthly precipitation (r2 = 0.64), while the monthly inflow during the dry months was subject to evapotranspiration. Furthermore, the study found a 20-year low flow period from 1954–1973 (2.76 ± 0.24 km3 yr−1) and a 24-year high flow period from 1975–1998 (3.84 ± 0.24 km3 yr−1), coinciding with both the climate variation and population growth in the watersheds.  相似文献   
8.
Ecotone or Ecocline: Ecological Boundaries in Estuaries   总被引:1,自引:0,他引:1  
Two main ecological boundaries, ecotone and ecocline, have been defined in landscape ecology. At this scale, the estuary represents a boundary between rivers and the sea, but there has been no attempt to fit empirical data for estuaries to these boundary models. An extensive data set from the Thames estuary was analysed using multivariate techniques and species-range analysis, in order to investigate whether the ecocline or the ecotone model was most relevant to this estuary. Data for periods of high and low freshwater flow allowed the impact of large-scale fluctuations implicit in both models to be determined.A continuum of assemblages existed along the salinity gradient from freshwater river to the North Sea, with shifts in the ranges of organisms apparent in response to changes in freshwater flow. This pattern closely fits an ecocline model. However, the estuary differs from previously defined ecoclines in having two overlapping gradients in the major stressor: from river to mid-estuary for freshwater species and from sea to mid-estuary for marine species. We propose, therefore, that the estuary represents a two-ecocline model, with fauna inhabiting the mid-estuary being either freshwater or marine species at the edge of their range, rather than ‘ true estuarine organisms ’. This allows a redefinition of the Remane diagram, with estuarine species removed, and supports previous arguments that brackish-water species do not exist. Such two-ecocline models may also exist in other marine systems, such as rocky shores.  相似文献   
9.
ABSTRACT

Environmental sustainability and the long-term wellbeing of Māori (the indigenous people of New Zealand) are interdependent and degradation of landscapes risks the progressive degradation of Māori wellbeing. The present study developed an analysis framework based on Ki Uta Ki Tai (holistic-mountains to the sea- management philosophy advocated by Ngāi Tahu) for exploring relationships between landcover and Māori values to enable predictions of cultural values through space and time. We used this framework to predict how two Māori values (Overall Health and Cultural Land Use) have been altered as a result of landcover change between 2001–2012 in three Canterbury catchments. The area of native vegetation declined while exotic pasture increased between 2001–2012, and there were corresponding declines in both cultural health scores. These results suggest that the change in landcover has reduced the ability of the landscape to support Māori values. This framework for assessing changes in Māori values with respect to changing environmental conditions may identify opportunities for Māori to better engage in land use management decisions.  相似文献   
10.
Abstract. In the framework of the Interreg II Project (July 1998 - June 2001), hydro-logical, chemical and biological data were collected in the Gulf of Trieste.
During spring and summer 2000, some particular thermohaline anomalies were observed in the Gulf of Trieste. Especially in May and June the water body showed: a very strong thermohaline stratification, an increase of advective salt water coming from the south and the presence of sharp pycnoclines. In July the temperature was higher than usual in the whole water column. Moreover, in late May and in June, massive mucilaginous aggregates were observed along the water column and at the surface.
In order to highlight these particular thermohaline features the hydrological data of 16 stations were analysed (Fig. 1). Two stations, in particular, were considered: one offshore (St. AA1, average depth 20 m) and one close to the coast (St. C1, average depth 17 m). For these two stations a best-fit analysis, computed over 11 and 7 years, respectively, was performed on temperature, salinity and density excess data.
Moreover, the hydrological features were compared with the rainfall, air temperature, wind speed data (Istituto Sperimentale Talassografico di Trieste - ISTT) and the Isonzo River's flow rate (Direzione Regionale dell'Ambiente - Regione F. V. G.) collected from January 1998 to December 2000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号