首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   208篇
  国内免费   198篇
测绘学   37篇
大气科学   19篇
地球物理   231篇
地质学   940篇
海洋学   17篇
天文学   21篇
综合类   44篇
自然地理   308篇
  2024年   1篇
  2023年   10篇
  2022年   45篇
  2021年   64篇
  2020年   57篇
  2019年   59篇
  2018年   46篇
  2017年   63篇
  2016年   58篇
  2015年   63篇
  2014年   61篇
  2013年   74篇
  2012年   82篇
  2011年   69篇
  2010年   70篇
  2009年   67篇
  2008年   62篇
  2007年   83篇
  2006年   67篇
  2005年   73篇
  2004年   57篇
  2003年   43篇
  2002年   33篇
  2001年   33篇
  2000年   63篇
  1999年   40篇
  1998年   24篇
  1997年   31篇
  1996年   31篇
  1995年   15篇
  1994年   17篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1617条查询结果,搜索用时 757 毫秒
1.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
2.
3.
CLIMATICTRENDINDICATEDBYVARIATIONSOFGLACIERSANDLAKESINTHETIANSHANMOUNTAINS¥HuRuji;YangChuande;MaHong;JiangFengqing(XinjiangIn...  相似文献   
4.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
6.
Based on our detailed structural characterization, we examine possible relationships between thrust faults and strike-slip faults and thrust-cored folds and depositional units in the Silla Syncline, a 4 km wide fold composed of fine-grained mudstone, coarse sandstone and conglomerate deposits of the Cerro Toro Formation in the Magallanes foreland basin, Chilean Patagonia. The syncline is bounded on its western flank by an asymmetric anticline and on its eastern flank by a broad zone of thrust faults and associated folds, which are oriented sub-parallel to the syncline axis. Deposition of the coarse-grained units of the Silla Syncline appears to have taken place in this structurally defined trough controlled primarily by thrust fault related growth structures flanking the syncline.The syncline and surrounding area have also been deformed by two sets of strike-slip faults, one right-lateral and one left-lateral. The strike-slip and thrust faulting operated contemporaneously for much of their active periods, although it appears that thrust faulting, confined within the fine-grained units, initiated slightly earlier than strike-slip faulting. In addition, younger igneous intrusions at high angle to bedding generally localize along the strike-slip faults. The cross-cutting relationships among the intrusions, strike-slip faults, and flexural slip faults show that all these structures were active during the same period, which extends beyond mid-Miocene.These conclusions support the premise that structures in deep-water sediments are important for understanding not only the deformation of a foreland basin, but also its depositional architecture.  相似文献   
7.
Anders Schomacker   《Earth》2008,90(3-4):103-113
In the geological record, hummocky dead-ice moraines represent the final product of the melt-out of dead-ice. Processes and rates of dead-ice melting in ice-cored moraines and at debris-covered glaciers are commonly believed to be governed by climate and debris-cover properties. Here, backwasting rates from 14 dead-ice areas are assessed in relation to mean annual air temperature, mean summer air temperature, mean annual precipitation, mean summer precipitation, and annual sum of positive degree days. The highest correlation was found between backwasting rate and mean annual air temperature. However, the correlation between melt rates and climate parameters is low, stressing that processes and topography play a major role in governing the rates of backwasting. The rates of backwasting from modern glacial environments should serve as input to de-icing models for ancient dead-ice areas in order to assess the mode and duration of deposition.A challenge for future explorations of dead-ice environments is to obtain long-term records of field-based monitoring of melt progression. Furthermore, many modern satellite-borne sensors have high potentials for recordings of multi-temporal Digital Elevation Models (DEMs) for detection and quantification of changes in dead-ice environments. In recent years, high-accuracy DEMs from airborne laser scanning altimetry (LiDAR) are emerging as an additional data source. However, time series of high-resolution aerial photographs remain essential for both visual inspection and high-resolution stereographic DEM production.  相似文献   
8.
气候变化对塔里木河来自天山的地表径流影响   总被引:21,自引:10,他引:11  
塔里木河水资源主要来自天山南坡两条源流,选择西段阿克苏河和中段开都河-孔雀河作为研究区.1956-2003年研究河源山区气温呈持续升温且降水波动增加的趋势,其中1995-2003年升温强劲,升温速率高出48 a期间平均的3倍以上;降水自1986年后持续增加,20世纪90年代较80年代增幅达18%,并显示出河源山区湿岛向塔里木盆地扩展.因高山缺少气象观测,出山径流过程变化可以综合反映中高山带的气候变化.塔里木河来自天山的地表径流在1986-2003年间持续增长,以冰川融水补给为主的库玛拉克河,1994年以来年径流量增加已在前期平均值基础上提升了一个台阶;开都河以降水径流补给为主,1986-2002年出现了观测记录以来的丰水期,并使1986年后博斯腾湖水位快速上升,恢复到1958年记录的最高水位以上.两河年径流变化趋势基本相似,但也显示有西、中段的气候变化局部差异,出现丰枯水期的不一致;然而,在近16 a升温过程中,年径流增长幅度和快慢相近.  相似文献   
9.
川西前陆盆地中—新生代沉积迁移与构造转换   总被引:10,自引:0,他引:10       下载免费PDF全文
川西前陆盆地中—新生代各构造层的残余厚度展布和沉积特征分析发现,四川克拉通周缘的前陆盆地在晚三叠世时期发育于龙门山山前,明显属于龙门山褶皱逆冲构造载荷所形成的前渊凹陷;侏罗纪早期的沉积地层呈面状分布,没有表现出显著的挠曲沉降,指示了一个构造相对平静的阶段;中侏罗世早期前渊凹陷迁移至龙门山北段和米仓山山前,前渊沉积从晚三叠世的北东向转换为近东西向,广泛的湖泊相沉积预示了前陆盆地的欠充填状态;中侏罗世中晚期,川西盆地沉降中心又迁移到大巴山山前,相应的挠曲变形又从近东西向转化为北西向,构成了大巴山的前渊凹陷;晚侏罗世—早白垩世时期,沉降中心再次回到米仓山山前,巨厚的前渊凹陷沉积指示了米仓山冲断带的主要活动时期;白垩纪末—古近纪的前渊凹陷则跃迁至雅安—名山地区。川西前陆盆地的同造山沉降中心以四川盆地中心为核心在西部和北部呈弧形迁移,沉积序列不断更替和叠加。中生界各构造层底界构造图显示现今的构造低部位位于川西北地区和川西南地区,在川西北地区均有东西走向的等值线分布,而川西南地区等值线走向则为北东-南西向。因此分析认为,晚侏罗世至早白垩世的构造变形可能控制了川西盆地现今的地层变形,形成了川西北地区的南北向构造挤压结构,而晚期的新生代构造变形则主要体现在川西盆地的西南部,形成北东-南西向的地层展布特征。  相似文献   
10.
“八五”、“九五”期间我国天然气探明储量幅度增长,大中型气田分布规律的深化研究密切关系到天然气储量的增长势头。克拉通盆地下层序古隆起控气理论和上层序非构造圈闭控气机理是克拉通大中型气田富集分布的基本规律,前陆盆地是我国富气盆地类型之一,其冲断带下盘大型造圈闭群、前缘斜坡岩性尖灭区带与浅层次生气藏、前缘隆起上的断块圈闭群等是该类盆地有利的天然气富集区带。依据充分的地质资料,结合我国天然气勘探实际,提  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号