首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
地球物理   1篇
  2021年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
针对极干旱的土壤水热通量遥感估算研究少和缺乏模型验证分析的不足,该文选取新疆塔克拉码干沙漠东南缘米兰绿洲,借助2010年8月7日TM影像数据,结合地面观测数据和土地覆盖类型解译,利用SEBAL模型反演了研究区地表通量。结果表明:该方法在极干旱区的模拟精度较高,研究区地表能量平衡各分量具有明显的时空分布特征。地表通量参数的遥感反演估算对极干旱区的生态保护、灾害监测和地区水资源管理具有重要现实意义。  相似文献   
2.
We study the relationships among precipitation, vegetation, and morphological characteristics of watersheds draining either side of the Dhofar Mountains in southeastern Oman to understand the geomorphic signature of water availability in a semi-arid carbonate landscape. Water availability is expressed in terms of vegetation and cloud cover. The integral and the statistical moments of the hypsometric curve were used to determine whether hyper-arid, inland-draining watersheds are significantly different from seasonally wet watersheds on the coast side of the mountain range. We demonstrate that the vegetation and cloud cover are correlated, with locations with longer cloud periods also having a longer period with a vegetation canopy. The analysis shows that the hypsometric curve and its statistical moments capture the morphological difference between wet watersheds shaped by groundwater sapping and dry watersheds with fluvial morphology. Specifically, the curves exhibit two shapes: watersheds with more vegetation and cloud cover are characterized by higher convexity, and those with less vegetation and cloud cover are characterized by higher concavity. A variance analysis of cloud cover, vegetation, and hypsometric integral shows that they are significantly different between the wet and dry watersheds. The link between hydrology and morphology is not strong at the scale of a single watershed, but it is significant when the watersheds are aggregated in zones. The statistical moments of the hypsometric curve in the range of values of the integral and skewness show good separation between watersheds dominated by sapping and fluvial erosion processes. We can separate the watersheds draining the mountain range in two distinct groups on the basis of their bimodal hydrological and morphological characteristics. Our findings support other studies that hypothesize a trade-off from chemical- to mechanical-dominated denudation in carbonate terranes as precipitation decreases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号