首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
地球物理   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 46 毫秒
1
1.
The July 2019 MW6.4 Ridgecrest, California earthquake and its distinct foreshocks were well recorded by local and regional stations, providing a great opportunity to characterize its foreshocks and investigate the nucleation mechanisms of the mainshock. In this study, we utilized the match-and-locate (M&L) method to build a high-precision foreshock catalog for this MW6.4 earthquake. Compared with the sequential location methods (matched-filter + cross-correlation-based hypoDD), our new catalog contains more events with higher location accuracy. The MW6.4 mainshock was preceded by 40 foreshocks within ~2 h (on July 4, 2019 from 15:35:29 to 17:32:52, UTC). Their spatiotemporal distribution revealed a complex seismogenic structure consisting of multiple fault strands, which were connected as a throughgoing fault by later foreshocks and eventually accommodated the 2019 MW6.4 mainshock. To better understand the nucleation mechanism, we determined the rupture dimension of the largest ML4.0 foreshock by calculating its initial rupture and centroid points using the M&L method. By estimating Coulomb stress change we suggested that the majority of foreshocks following the ML4.0 event and MW6.4 mainshock occurred within regions of increasing Coulomb stress, indicating that they were triggered by stress transfer. The nucleation process before the ML4.0 event remains unclear due to the insufficient sampling rate of waveforms and small magnitude of events. Thus, our study demonstrates that the M&L method has superior detection and location ability, showing potential for studies that require high-precision location (e.g., earthquake nucleation).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号