首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
地球物理   2篇
地质学   4篇
海洋学   5篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   4篇
  2005年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
This study has compared the environmental characteristics of the basins and saline lower reaches of the tributaries of eight estuaries on the south coast of Western Australia, which differ in their degree of connectivity with the ocean. Although four estuaries between 115.1° and 121.8° E along that coast remain permanently open to the ocean, the others only become open when the volume of river discharge is sufficient to breach the prominent sand bars at their mouths, which occurs annually following heavy winter and early spring rainfall in some estuaries (seasonally open) and infrequently in others (normally closed). Estuaries to the west of 118.5° E are predominantly permanently open, e.g. Oyster Harbour, or seasonally open, e.g. Broke, Irwin and Wilson inlets, whereas those further east, e.g. Wellstead Estuary and Hamersley, Culham and Stokes inlets, where annual rainfall and thus discharge are much lower, only become open after exceptionally heavy discharge. In permanently and seasonally-open estuaries, pronounced haloclines and oxyclines are present in the narrow rivers but not the wide basins where the waters are subjected to wind-driven mixing. The extent of cyclical seasonal fluctuations in environmental conditions differed markedly among the three seasonally-open estuaries and between years in one of those systems. These differences reflected variations in the relationship between the volume of fluvial discharge, which is determined by a combination of the amount of local rainfall, catchment size and extent of clearing of native vegetation, and the amount of intrusion by marine waters, which is largely controlled by the size and duration of the opening of the estuary mouth. The mean seasonal salinities in the basins of the three normally-closed estuaries increased over three years of very low rainfall to 64 in the deepest of these estuaries (Stokes Inlet) to 145 in Hamersley Inlet and to 296 in the shallowest estuary (Culham Inlet). These results demonstrate that the environmental characteristics of estuaries on the south coast of Western Australia differ markedly, even among those of the same type, e.g. seasonally-open estuaries or normally-closed estuaries.  相似文献   
2.
The seaward end of modern rivers is characterized by the interactions of marine and fluvial processes, a tract known as the fluvial to marine transition zone, which varies between systems due to the relative strength of these processes. To understand how fluvial and tidal process interactions and the fluvial to marine transition zone are preserved in the rock record, large‐scale outcrops of deltaic deposits of the Middle Jurassic Lajas Formation (Neuquén Basin, Argentina) have been investigated. Fluvial–tidal indicators consist of cyclically distributed carbonaceous drapes in unidirectional, seaward‐oriented cross‐stratifications, which are interpreted as the result of tidal modulation of the fluvial current in the inner part of the fluvial to marine transition zone. Heterolithic deposits with decimetre‐scale interbedding of coarser‐grained and finer‐grained facies with mixed fluvial and tidal affinities are interpreted to indicate fluvial discharge fluctuations (seasonality) and subordinate tidal influence. Many other potential tidal indicators are argued to be the result of fluvial–tidal interactions with overall fluvial dominance or of purely fluvial processes. No purely tidal or tide‐dominated facies were recognized in the studied deposits. Moreover, fluvial–tidal features are found mainly in deposits interpreted as interflood (forming during low river stage) in distal (delta front) or off‐axis (interdistributary) parts of the system. Along major channel axes, the interpreted fluvial to marine transition zone is mainly represented by the fluvial‐dominated section, whereas little or no tide‐dominated section is identified. The system is interpreted to have been hyposynchronous with a poorly developed turbidity maximum. These conditions and the architectural elements described, including major and minor distributary channels, terminal distributary channels, mouth bars and crevasse mouth bars, are consistent with an interpretation of a fluvial‐dominated, tide‐influenced delta system and with an estimated short backwater length and inferred microtidal conditions. The improved identification of process interactions, and their preservation in ancient fluvial to marine transition zones, is fundamental to refining interpretations of ancient deltaic successions.  相似文献   
3.
This study has determined the ways in which the density, number of species, species composition and trophic structure of free-living nematode assemblages in the subtidal waters of a large southern hemisphere microtidal estuary change spatially and seasonally, and has explored whether those four biotic characteristics are related to certain environmental factors. Based on data derived from samples collected seasonally at 12 sites throughout the estuary, the densities and number of species of nematodes decreased progressively with distance from estuary mouth, to reach a minimum at sites where salinities were most variable, and then increased slightly in the uppermost part of the estuary where salinities were least. Densities were also generally greatest in spring, due largely to increases in the abundance of epistrate-grazing species at this time and thus when the amount of primary food (microphytobenthos) peaked. The spatial distribution of the composition of the nematode assemblages was closely correlated with salinity and, to a lesser extent, grain-size composition and amount of particulate organic material (%POM) in the sediment. Although species composition changed sequentially along the estuary, the change was particularly pronounced between sites above and below the area where salinities started to decline markedly and become more variable and %POM increased markedly. This reflected, in particular, far greater abundances of Spirinia parasitifera at the six downstream sites and of Theristus sp. 1 at the six sites further upstream. Species composition underwent pronounced seasonal cyclical changes at all sites, presumably reflecting interspecific differences in the timing of peak reproduction and thus of recruitment. The trophic structure of the nematode assemblages changed both spatially and temporally in relation to the relative abundance of different food sources. Thus, for example, non-selective deposit feeders, such as Theristus sp. 1, dominated samples in the upper estuary, where %POM was by far the greatest, and was rare or absent at downstream sites. Conversely, epistrate grazers, such as species of the Chromadoridae, were most abundant at downstream sites in spring, when the density of the microphytobenthos reached its maximum.  相似文献   
4.
The Pliocene–Pleistocene peripheral marine basins of the Mediterranean Sea in southern Italy, from Basilicata and western Calabria to northern and eastern Sicily, represent tectonically formed coastal embayments and narrow straits. Here, units of cross‐stratified, mixed silici–bioclastic sand, 25 to 80 m thick, record strong tidal currents. The Central Mediterranean Sea has had a microtidal range of ca 35 cm, and the local amplification of the tidal wave is attributed to tides enhanced in some of the bays and to the out‐of‐phase reversal of the tidal prism in narrow straits linking the Tyrrhenian and Ionian basins. The siliciclastic sediment was generated by local bedrock erosion, whereas the bioclastic sediment was derived from the contemporaneous, foramol‐type cool‐water carbonate factories. The cross‐strata sets represent small to medium‐sized (10 to 60 cm thick) two‐dimensional dunes with mainly unidirectional foreset dip directions. These tidalites differ from the classical tidal rhythmites deposited in mud‐bearing siliciclastic environments. Firstly, the foreset strata lack mud drapes and, instead, show segregation of siliciclastic and bioclastic sand into alternating strata. Secondly, the thickness variation of the successive silici–bioclastic strata couplets, measured over accretion intervals of 2 to 3 m and analysed statistically, reveal only the shortest‐term, diurnal and semi‐diurnal tidal cycles. Thirdly, the record of diurnal and semi‐diurnal tidal cycles is included within the pattern of neap‐spring cycles. Differences between these sediments and classical tidal rhythmites are attributed to the specific palaeogeographic setting of a microtidal sea, with the tidal currents locally enhanced in peripheral basins. It is suggested that this particular facies of mud‐free, silici–bioclastic arenite rhythmites in the stratigraphic record might indicate a specific type of depositional sub‐tidal environment of straits and embayments and the shortest‐term tidal cycles.  相似文献   
5.
A 15‐month data set of daily time‐averaged video images (Argus) has been analyzed to describe the spatial and temporal variability of the rip channels on a multiple‐barred coast at Noordwijk aan Zee, The Netherlands. The landward boundary of the intertidal bars and a proxy of the subtidal bar crest, defined as the intertidal and subtidal bar lines respectively, were derived from the Argus images. Local seaward‐directed deviations of the bar lines represent the cross‐shore and alongshore locations of the rip channels. The average intertidal rip spacing ( ) was 243 m, but the rips were not spaced regularly (σλ/ = 0.47). Some intertidal rips were observed to fill up during falling tide, but the majority remained open. The filled intertidal rip channels had more landward positions and migrated more slowly (2.4 versus 4.6 m/day) in the alongshore direction than the open intertidal rip channels. The number and the alongshore migration rate of open intertidal rip channels increased with the preceding wave heights (r = 0.26, p < 0.01) and alongshore component of the offshore wave power (r = 0.25, p < 0.01), respectively. The shape of the intertidal bar lines was similar to the subtidal bar line shape, suggesting that the intertidal morphology is coupled to the subtidal alongshore variability. The phase of two bar lines could vary from in phase (0°) to out of phase (180°). The phase changes gradually, due to different alongshore migration rates of the intertidal and subtidal bar lines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
Sandstone tidal cross‐strata are the predominant sedimentary feature of strait‐fill stratigraphic successions. However, although widely described in numerous studies, tidal strait‐fill two‐dimensional and three‐dimensional cross‐strata have rarely been reported to occur in discrete intervals which are laterally adjacent or vertically stacked, and the meaning of this stratigraphic architecture has not yet been fully investigated. Understanding of the processes responsible for changes in the internal features of modern and ancient tidal bedforms is essential in order to predict lateral and vertical heterogeneities in analogous reservoir strata. This facies‐based study aims to interpret the three‐dimensional to two‐dimensional cross‐strata transition observed in the lower Pleistocene mixed siliciclastic/bioclastic sandstone filling the Catanzaro Strait, in southern Italy, during a continuous phase of tectonically driven marine transgression. Tidal cross‐strata disappear in the uppermost interval of the studied succession, where mudstone strata prevail. This stratigraphic trend is interpreted as the evidence of an important change in the tidal strait hydrodynamics due to a phase of relative sea‐level rise. At the beginning of the transgression, three‐dimensional tidal dunes migrated throughout the ca 3 to 4 km wide and ca 30 km long, WNW–ESE‐oriented Catanzaro Strait, due to strong tidal currents amplified through the seaway and flowing in semi‐diurnal phase opposition. As the intermediate phase of transgression enlarged the seaway width, the tidal current strength decreased as tidal water exchange occurred over a larger cross‐sectional area. The progressive reduction of the bed shear stress modified three‐dimensional tidal dunes into an extensive two‐dimensional bedform field. At the end of the transgression, the further widening of the Catanzaro Strait into a ca 10 to 12 km wide marine passageway changed the tidally dominated strait into a non‐tidal open shelf. The results of this research suggest the presence of a ‘critical cross‐sectional area’ in the narrowest strait‐centre zone which controls the activation and deactivation of tidal current amplification along a marine seaway.  相似文献   
7.
The characteristics of the fish faunas in nearshore, shallow (<1.2 m) waters of the basins of estuaries along the same coastline, but which were open to the ocean for varying periods, have been determined and compared. The fish faunas of the permanently-open Oyster Harbour, the seasonally-open Broke, Irwin and Wilson inlets and the normally-closed Wellstead Estuary on the south coast of Western Australia were sampled by seine net seasonally for 2 years. Irrespective of the frequency and duration that the estuary mouth was open, the ichthyofauna of each estuary was numerically dominated by three atherinid species and three gobiid species (92.9–99.7%), each of which completes its life cycle within these estuaries. The ichthyofaunal compositions of each estuary differed significantly, however, from that of each other estuary. These differences were largely attributable to the relative abundances of the above six species varying between estuaries, which, in turn, reflected differences in such factors as estuary mouth status, macrophyte cover and salinity. For example, Favonigobius lateralis and Leptatherina presbyteroides, which are also represented by marine populations, were most abundant in the permanently-open estuary (Oyster Harbour), which, in terms of substrate and salinity, most closely resembled the nearshore marine environment. In contrast, Leptatherina wallacei made its greatest contribution in the only estuary to exhibit a protracted period of greatly reduced salinities, which is consistent with its distribution in permanently-open estuaries on the lower west coast of Australia, while Atherinosoma elongata and Pseudogobius olorum were particularly numerous in estuaries containing dense stands of the seagrass Ruppia megacarpa. Marine species made the greatest contribution to species richness in the permanently-open estuary and least in the normally-closed estuary. Species richness was greatest in summer and least in winter in each estuary, but differed markedly between years only in Wilson Inlet. Density of fishes was greatest in the most eutrophic estuary (Wellstead Estuary) and least in the most oligotrophic estuary (Broke Inlet) and only underwent marked seasonal variations in Wilson Inlet and Wellstead Estuary, in which densities fell to their minima in winter. Ichthyofaunal composition varied between years in the Broke and Wilson inlets and Wellstead Estuary, in which there was little or no connection with the ocean in one of those years. Species composition underwent progressive seasonal changes throughout the year in Wellstead Estuary, due to the abundance of certain species peaking at different times of the year.  相似文献   
8.
Light attenuation (Kd) of photosynthetically active radiation (PAR) by chromophoric dissolved organic matter (CDOM), total suspended solids (TSS) and chlorophyll a (Chl a) were measured at nine stations along an estuarine gradient in the Swan River, Western Australia, over 15 months. There were strong spatial gradients associated with the marine-freshwater transition along the 32 km of estuary sampled, as well as seasonal gradients mainly associated with rainfall, 80% of which occurs between May and September. CDOM absorbances at 440 nm reached a maximum of 10.9 m−1 with the freshwater inflow but concentrations of suspended matter remained low throughout the sampling period (1.0–21.0 mg l−1) under the diurnal tides of the estuary. CDOM was the dominant constituent of Kd and a stepwise multiple regression showed that 66% (p < 0.0001) of the variation in Kd can be explained by CDOM and an additional 8% (p < 0.0001) by TSS. As a consequence of this result, analysis into the influence of river discharge rates on CDOM absorbance levels was examined for 2002 using data collected during this study, and for 2000 and 2001 using historical dissolved organic carbon (DOC) and river discharge data. The outcome of this analysis infers that greater river discharge rates result in increased CDOM absorbances in the Swan River estuary.  相似文献   
9.
ABSTRACT

The seasonal distribution of metals (V, Cr, Co, Cu, Ni, Zn, Pb, Mn, Fe, Al and Ti) in suspended and bottom sediments of four minor estuaries (Terekhol, Chapora, Sal and Talpona rivers) of Goa, India was investigated to understand the metal distribution process in the estuarine region. The highest particulate-metal concentrations were found in low-salinity regions of all the estuaries, in the wet season (e.g. in the Terekhol River, the averages in ppm were Co: 53, Ni: 197, Cu: 208, Zn: 212 and Pb: 65) compared to the dry season averages (Co: 27, Ni: 76, Cu: 105, Zn: 164 and Pb: 13 ppm). The estuarine-mixing diagrams showed non-conservative behaviour in both seasons. The Sal River had the highest particulate-metal concentration (Co: 106, Ni: 300 and Zn: 323 ppm), suggesting an anthropogenic input. The enrichment factor for suspended matter was higher than bottom sediments with extremely high enrichment for Mn (>10). The Geo-accumulation index displayed unpolluted to polluted class for all metals. The study highlights the important role played by small estuaries in seasonal metal release and accumulation along the coastal region.  相似文献   
10.
Extensive vibracoring of both flood- and ebb-tidal deltas along the central Gulf Coast of the Florida peninsula reveals a strong overall similarity with subtle distinctions between flood and ebb varieties. Although the coast in question is microtidal, the inlets range from tide-dominated to distinctly wave-dominated. Both types of tidal deltas overlie a muddy sand interpreted to have been deposited in a back-barrier environment. The sharp contact at the base of the tidal delta sequence is typically overlain by a thin shell gravel layer. The ebb-tidal delta sequence is characterized by fine quartz sand with shell gravel in various concentrations; coarse and massive at the margins of the main ebb channel, and finer and imbricated at the marginal flood channels. The flood-tidal deltas are characterized by the same facies but with a small amount of mud. Shelly facies on the channels on flood deltas are not as well developed as on the ebb deltas. The combination of the stratigraphic sequence and the lithofacies make tidal deltas readily identifiable in the ancient record. The differences between flood and ebb varieties are subtle but consistent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号