首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2016年   2篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
We study pairwise interactions of elliptical quasi-geostrophic (QG) vortices as the limiting case of vanishingly thin uniform potential vorticity ellipsoids. In this limit, the product of the vertical extent of the ellipsoid and the potential vorticity within it is held fixed to a finite non-zero constant. Such elliptical “lenses” inherit the property that, in isolation, they steadily rotate without changing shape. Here, we use this property to extend both standard moment models and Hamiltonian ellipsoidal models to approximate the dynamical interaction of such elliptical lenses. By neglecting non-elliptical deformations, the simplified models reduce the dynamics to just four degrees of freedom per vortex. For simplicity, we focus on pairwise interactions between identical elliptical vortices initially separated in both the horizontal and vertical directions. The dynamics of the simplified models are compared with the full QG dynamics of the system, and show good agreement as expected for sufficiently distant lenses. The results reveal the existence of families of steadily rotating equilibria in the initial horizontal and vertical separation parameter space. For sufficiently large vertical separations, equilibria with varying shape exist for all horizontal separations. Below a critical vertical separation (stretched by the constant ratio of buoyancy to Coriolis frequencies N / f), comparable to the mean radius of either vortex, a gap opens in horizontal separation where no equilibria are possible. Solutions near the edge of this gap are unstable. In the full QG system, equilibria at the edge of the gap exhibit corners (infinite curvature) along their boundaries. Comparisons of the model results with the full nonlinear QG evolution show that the early stages of the instability are captured by the Hamiltonian elliptical model but not by the moment model that inaccurately estimates shorter-range interactions.  相似文献   
2.
This paper focuses on the nonlinear interaction between a surface quasi-geostrophic buoyancy filament and an internal vortex. We first revisit the stability of an isolated buoyancy filament. The buoyancy profile considered is continuous and leads to a continuous velocity field, albeit one with infinite shear just outside its edge. The stability properties of an isolated filament help to interpret the unsteady interaction with a sub-surface (internal) vortex studied next. We find that, in all cases, the filament breaks into billows, analogous in form to those occurring in Kelvin–Helmholtz shear instability. For intense buoyancy filaments, the vortex itself may undergo strong deformations, including being split into several pieces. Generally, the nonlinear interaction causes both the filament and the vortex to lose their respective “self”-energies to the energy of interaction. The flow evolution depends sensitively on whether the vertical vorticity of the filament and the vortex have the same or opposite signs – termed “cooperative” and “adverse” shear respectively. In cooperative shear, the filament rolls up into a coherent surface eddy above a vortex initially placed below it, whereas in adverse shear, buoyancy is expelled above the vortex. Although sufficiently great shear induced by the buoyancy filament may split the vortex in both cases, adverse shear is significantly more destructive.  相似文献   
3.
Abstract

In this paper we examine the behaviour of oceanic unsteady flow impinging on isolated topography by means of numerical simulation. The ocean model is quasigeostrophic and forced by an oscillatory mean flow. The fluid domain is of the channel type and open-boundary numerical conditions are used to represent downstream and upstream flow.

In certain cases, vortex shedding, either cyclonic or anticyclonic, is observed in the lee of obstacles. Such shedding can be explained as the consequence of both an enhanced process of vorticity dissipation over the topography which locally affects the balance of potential vorticity on the advective timescale, and a periodic dominance of advective effects which sweep the fluid particles trapped on the seamount. For refined resolution and smallest viscosity the model will predict flows in which the shed eddies are coherent structures with closed streamlines.

The model suggests a mechanism by which topographically generated eddies may be swept away from a seamount in the ocean.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号