首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   137篇
  国内免费   106篇
测绘学   213篇
大气科学   72篇
地球物理   166篇
地质学   406篇
海洋学   77篇
天文学   3篇
综合类   71篇
自然地理   183篇
  2024年   2篇
  2023年   19篇
  2022年   20篇
  2021年   22篇
  2020年   41篇
  2019年   52篇
  2018年   25篇
  2017年   51篇
  2016年   59篇
  2015年   40篇
  2014年   56篇
  2013年   78篇
  2012年   67篇
  2011年   72篇
  2010年   59篇
  2009年   70篇
  2008年   64篇
  2007年   62篇
  2006年   64篇
  2005年   44篇
  2004年   31篇
  2003年   28篇
  2002年   31篇
  2001年   25篇
  2000年   14篇
  1999年   27篇
  1998年   12篇
  1997年   15篇
  1996年   10篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
排序方式: 共有1191条查询结果,搜索用时 31 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.  相似文献   
3.
介绍了J2EE架构和多层体系结构的发展,在B/S三层架构的基础上给出了包含应用服务器中间件的多层分布式应用体系结构,并把此体系结构应用于电信氽业的有价卡管理系统项目中。分析了此项同的功能结构和体系结构,采用J2EE开发平台和技术设计实现了由浏览器、Web服务器、应用服务器、数据库服务器组成的多层体系架构。  相似文献   
4.
对武汉区域气象中心并行计算机系统进行了详细地介绍,分析了并行计算机体系结构、网络和存储系统特点;给出了在并行计算机SP上实现数值预报业务并行化的部分结果;对数值预报模式在串、并行编程环境下的结果进行了分析比较。  相似文献   
5.
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring‐early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70‐year‐old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high‐latitude stands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
7.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
8.
应用理论推导及数值计算方法,对Stokes随机波的谱特性进行了分析。首先将波面方程,海水质点水平速度用一阶波面分量的非线性组合表示,应用平稳随机高阶短的降阶计算法则,得到了波面方程及海水质点水平速度与一阶波面分量的自相关函数之间的关系,从而确定了Stokes随机波浪的波浪谱密度及海水质点水平速度和加速度谱密度,进而求得有关波浪要素的均方根值。文章还应有数值计算方法,分析了波浪基本参数对均方根值的影响。  相似文献   
9.
There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations.This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.  相似文献   
10.
This paper describes a real-time control architecture for Dual Use Semi-Autonomous Underwater Vehicle (DUSAUV), which has been developed at Korea Research Institute of Ships and Ocean Engineering (KRISO) for being a test-bed of development of underwater navigation and manipulator technologies. DUSAUV has three built-in computers, seven thrusters for six DOF motion control, one 4-function electric manipulator, one ballasting motor, built-in power source, and various sensors. A supervisor control system with GUI and a multi-purpose joystick is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers for real-time control purpose, while Microsoft OS product is ported in the supervisor computer for GUI programming convenience. A hierarchical control architecture, which consists of application layer, real-time layer and physical layer, has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in an ocean engineering basin of KRISO is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号