首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   55篇
  国内免费   12篇
测绘学   3篇
大气科学   10篇
地球物理   152篇
地质学   65篇
海洋学   2篇
天文学   2篇
综合类   1篇
自然地理   31篇
  2024年   2篇
  2022年   4篇
  2021年   12篇
  2020年   17篇
  2019年   13篇
  2018年   6篇
  2017年   16篇
  2016年   18篇
  2015年   13篇
  2014年   15篇
  2013年   25篇
  2012年   11篇
  2011年   5篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   14篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有266条查询结果,搜索用时 31 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
遥感和GIS支持下的分布式融雪径流过程模拟研究   总被引:2,自引:0,他引:2  
基于遥感(RS)和地理信息系统(GIS)技术,设计和构建了一个分布式融雪径流模型,整个分布式融雪径流过程的模拟计算基于能量平衡和水量平衡,由分布式栅格融雪过程、分布式栅格产流过程以及分布式栅格汇流过程组成,融雪以及产汇流过程全部基于栅格尺度,全面实现了融雪过程的分布式模拟.分布式栅格融雪过程中对"度日法"加以改进,引入了"单元时段"的概念,从而得到了"度分融雪模型";针对融雪过程中颇为复杂的冻融反复性难题,提出了旨在解释积雪冻融反复性物理机制的"冻融系数"的重要概念,对于准确把握融雪过程的物理机制具有重要意义.同时基于GIS开发了分布式融雪径流模拟系统,为分布式融雪径流模型的运行提供了平台和技术支持,二者均为融雪洪水预警决策支持系统的核心模块部分.基于由MODlS等遥感数据得到的积雪信息、地表温度等下垫面信息,基础地理信息数据如DEM及其空间分析数据和大量野外同步观测数据(积雪信息、气象数据),对典型研究区新疆军塘湖流域2006年春季典型融雪期(2006-03-06,11:00-2006-03-10,11:00)内的洪水过程进行了模拟,模拟结果精度较高,平均精度0.82,达到了融雪洪水预警预报的业务需求标准.  相似文献   
3.
To study the effects of biological soil crusts (BSCs) on hydrological processes and their implications for disturbance in the Mu Us Sandland, the water infiltration, evaporation and soil moisture of high coverage (100% BSCs), middle coverage (40% BSCs) and low coverage (0% BSCs, bare sand) of moss‐dominated crusts were conducted in this study, respectively. The conclusions are as follows: (1) the main effects of moss‐dominated crusts in the Mu Us Sandland on the infiltration of rainwater were to reduce the infiltration depths and to retain the limited rainwater in shallow soil; (2) moss‐dominated crusts have no significant effects on daily evaporation when the volumetric water content at 4 cm depth in 100% BSCs (VWC4) was over 24.7%, on enhanced daily evaporation when the VWC4 ranged from 6.5% to 24.7% and on reduced daily evaporation when the VWC4 was less than 6.5%; and (3) decreasing the coverage of moss‐dominated crusts (from 100% to 40%) did not significantly change its effects on infiltration, evaporation and soil moisture. Our results demonstrated that for the growth and regeneration of shrubs, which were dominated by Artemisia ordosica in the Mu Us Sandland, high coverage of moss‐dominated crusts has negative effects on hydrological processes, and these negative effects could not be significantly reduced by decreasing the coverage of moss‐dominated crusts from 100% to 40%. Therefore, for the sustained and healthy development of shrub communities in the Mu Us Sandland, it is necessary to take appropriate measures for the well‐developed BSCs in the sites with high vegetation coverage in the rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   
5.
利用Pettitt非参数检验法和Mann-Kendall非参数趋势检验法,分析年最大洪峰流量序列的非一致性,确定序列的变异形式,采用“分解-合成”理论对其进行一致性修正,得到过去、现状两种条件下年最大洪峰流量序列,根据贝叶斯理论对序列一致性修正前后参数不确定性进行估计,并对其预报区间优良性进行评价。研究结果表明:年最大洪峰流量序列变异点发生在1993年,序列整体上升趋势不显著,在1957-1993年子序列呈显著下降趋势,而1994-2006年子序列变化趋势不显著,跳跃变异为序列主要变异形式;给出了实测、还原及还现序列参数后验分布估计值及95%置信区间,将其结合优化适线法进行P-Ⅲ型频率分析,得到修正前后设计频率年最大洪峰流量预报区间估计值;还原、还现序列与实测序列相比,预报区间覆盖率均提高24%,平均带宽分别减少39.59%、23.17%,平均偏移幅度分别减少28.45%、11.39%。通过对非一致性年最大洪峰流量序列还原/还现计算,可减小参数估计不确定性对其计算产生的影响,从而提高预报区间的可靠性。  相似文献   
6.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   
7.
Abstract

This study examined the end-of-winter snow storage, its distribution and the spatial and temporal melt patterns of a large, low gradient wetland at Polar Bear Pass, Bathurst Island, Nunavut, Canada. The project utilized a combination of field observations and a physically-based snowmelt model. Topography and wind were the major controls on snow distribution in the region, and snow was routinely scoured from the hilltop regions and deposited into hillslopes and valleys. Timing and duration of snowmelt at Polar Bear Pass were similar in 2008 and 2009. The snowmelt was initiated by an increase in air temperature and net radiation receipt. Inter-annual variability in spatial snowmelt patterns was evident at Polar Bear Pass and was attributed to a non-uniform snow cover distribution and local microclimate conditions. In situ field studies and modelling remain important in High Arctic regions for assessing wetland water budgets and runoff, in addition to model parameterization and validation of satellite imagery.

Editor Z.W. Kundzewicz

Citation Assini, J. and Young, K.L., 2012. Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrological Sciences Journal, 57 (4), 738–755.  相似文献   
8.
中国冰冻圈水文过程变化研究新进展   总被引:10,自引:2,他引:10       下载免费PDF全文
冰冻圈显著的变化已经对冰冻圈水文过程产生了一系列影响。本文重点梳理和分析了近20年,尤其是近10年以冰川融水、融雪径流、冻土水文等为主体的中国冰冻圈水文过程变化研究方面取得的新进展:①在冰川融水变化研究方面,对不同尺度的冰川融水开展了全面研究,发现冰川融水呈现全面增加之势;对冰川融水"拐点"是否出现进行了科学辨识,有了基本认识;对冰川融水过程进行了模型模拟,取得显著进展。②在融雪径流变化研究方面,通过对不同流域融雪径流估算,可基本掌握各河流的融雪贡献率;中国融雪径流变化差异较大,增减不一;融雪期变化具有普遍性,突出特点是峰值提前。③在冻土水文研究方面,通过对地表水-活动层壤中流-多年冻土层上水之间关系的研究,揭示了冻土区径流形成的重力和热力耦合机制;多年冻土变化对地表径流的影响已经显现,主要表现在冬季(枯水季)径流增加;已经发现多年冻土退化对径流有直接补给作用,在一些流域补给量可能达到一定量级。  相似文献   
9.
Monte-Carlo simulations were used to assess the extent of shortterm alkalinity depressions occuring in Sierra Nevada lakes due to acidic deposition events. The Episodic Event Model (EEM) was used to simulate spring snowmelt events. Snow course data, precipitation data and lake acidification surveys were used to derive values for the EEM parameters. Spring snowmelt events were shown to have great impacts on the water quality of Sierran lakes. Lakes are likely to be most affected by the early-spring snowmelt event because the epilimnion depth is at a minimum, which indicates minimum dilution. Under annual average loading conditions, no Sierran lake has been reported as acidic although 29% of the lakes have alkalinities less than 40 µeq/L indicating a sensitivity to acidification. In simulations of early-spring snowmelt events, using present-day acidic loading conditions, it was estimated 79% ± 9% of the lakes would experience shortterm lake alkalinity depressions to levels less than 40 µeq/L. The results provided by the model simulations are valuable in establishing upper and lower limits on the extent of possible episodic acidification to lake-resources-at-risk. The most critical parameters controlling the magnitude of lake alkalinity depressions during snowmelt episodic events are a) the lake area to watershed area ratio — a measure of input loading, and b) the epilimnion volume — a measure of dilution and mixing.  相似文献   
10.
Kalman滤波在黄河上游融雪期径流预报中的应用初探   总被引:1,自引:1,他引:1  
宋强 《冰川冻土》1991,13(1):27-34
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号