首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   10篇
  2005年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
The properties and transformation of dissolved organic matter (DOM) extracted (10 L water per kilogram compost) from municipal solid waste (MSW) compost at five stages (days 47, 77, 105, 126, and 187) of composting were investigated. The DOM was fractionated into hydrophobic or hydrophilic neutrals, acids, and bases. The unfractionated DOM, the hydrophobic acids and neutrals (HoA and HoN, respectively), and the hydrophilic neutrals (HiN) fractions were studied using solid-state 13C-NMR, FTIR, and DRIFT spectroscopy. The HoA fraction was found to be the dominant (percentage of total DOM) hydrophobic fraction, exhibiting a moderate increase during composting. The HoN fraction increased sharply from less than 1% to 18% of the total DOM during 187 days of composting, while the hydrophobic bases (HoB) exhibited the opposite trend. The HiN represented the major fraction of the hydrophiles up to 120 days of composting, decreasing thereafter by 38%. The relative concentration of the hydrophilic acids and bases (HiA and HiB, respectively) exhibited no consistent trend during composting. DRIFT spectra of the unfractionated DOM taken from the composting MSW revealed a decreasing level of polysaccharide structures with time. The 13C-NMR and FTIR spectra of the HoA fraction exhibited a polyphenol-humic structure, whereas the HoN spectra exhibited strong aliphatic features. The spectra of the HiN fraction confirmed its polysaccharide nature. During the final stage of composting, the DOM concentration was steady, while a relative decrease of HiN concomitant with an increase of HoA and HoN fractions was observed. These indicate that the DOM contained a low concentration of biodegradable organic matter and a higher content of macromolecules related to humic substances. The biological significance and heavy metal binding of these fractions are being studied based on earlier observations showing enhanced plant growth in the presence of DOM extracted from mature as opposed to immature compost.  相似文献   
2.
This paper reports on total organic carbon (TOC) and its fractions dissolved organic carbon (DOC) and particulate organic carbon (POC) studied in different Polish rivers. The samples investigated came from the Vistula, Odra, and Warta rivers, and were compared with similar data on river waters available in the literature. The DOC concentrations ranged from 10.0 to 14.2 mg/L and did not vary during the vegetative season. The POC values considerably increased from May through September and reached a maximum in summer. Results for the years 1991τ1996 evidenced a significant increase in the POC value for the Polish rivers from 10.8 to 24.5 mg/L, in comparison with analogous values for West European rivers and North American ones. The enhanced values of TOC and POC were interpreted as being due to anthropogenic pollution.  相似文献   
3.
The characterization of refractory organic substances (ROS) is very complicated because of their heterogeneous structure. Size-exclusion chromatography with continuous detection of dissolved nitrogen (LC-DN), dissolved organic carbon (LC-DOC), and UV-absorbance (LC-UV) is a very useful analytical tool for the characterization of changes of ROS in natural aquatic systems and in technological treatment. The effect of natural, oxidative, and biochemical processes on formation and removal of ROS is described. Additionally the role of hydrolysable carbohydrates in the composition of ROS is presented.  相似文献   
4.
Previous field and laboratory studies showed that organically bound nutrients can contribute largely to the export of N, P, and S from soil into aquatic systems. One possible determinant for the losses of dissolved organic nutrients leaving the soil environment could be their distribution between dissolved organic matter (DOM) fractions of different mobility in soil. To elucidate the potential influence of DOM fractions under varying flow conditions on the vertical translocation of organically bound nutrients, we determined the concentrations and fluxes of dissolved organic C (DOC) and nutrients (DON, DOP, DOS) in soil water under a Scots pine (Pinus sylvestris L.) and a European beech (Fagus sylvatica L.) forest. We sampled seepage water from the organic forest floor layer and the mineral subsoil using zero‐tension lysimeters and soil pore water using tension lysimeters and suction cups. DOM in soil water was fractionated into hydrophilic and hydrophobic compounds by XAD‐8 at pH 2. We found that the organic forest floor layers were large sources for DOC, DON, DOP, and DOS. The dissolved organic nutrients were mainly concentrated in the hydrophilic DOM fraction which proved to be more mobile in mineral soil pore water than the hydrophobic one. Consequently, the concentrations and fluxes of dissolved organic nutrients decreased less with depth than those of DOC. Concentrations as well as fluxes in subsoil pore water of DOC and dissolved organic nutrients in the studied weakly developed soils were high as compared with literature data on deeply developed forest soils. Under conditions of rapid water flow through the strongly structured mineral soil at the beech site, almost no retention of DOM took place and thus the influence of the distribution of organically bound nutrients between the DOM fractions on the export of DON, DOP, and DOS was negligible.  相似文献   
5.
Effective biodegradation of organic compounds is one of the major objectives while optimizing biological drinking water treatment processes. Enhancing the biological activated carbon (BAC) filter performance with nutrient addition was studied using chemically pre-treated and ozonated lake water. Three parallel pilot-scale biofilters were operated: one with phosphorus addition, one with a mixture of inorganic nutrients addition, and one as a reference. The addition of nutrients had no statistically significant influence on the natural organic matter (NOM) removal when monitored by total organic carbon (TOC), UV absorbance, and assimilable organic carbon (AOC). However, the addition of nutrients significantly increased the heterotrophic plate count (HPC) bacteria of the filter effluent, while the adenosine triphosphate (ATP) analysis of the attached bacteria did not show any increase in BAC filters. It seemed that in BAC filters the bacterial growth was limited by phosphorus, but the increased bacteria could not attach themselves during the relatively short acclimatization period.  相似文献   
6.
Dissolved organic carbon (DOC) in seepage water can combine with organic pollutants, with Al and heavy metal ions and transport them through the soil profile with a potential to contaminate groundwater. We studied the production of DOC in aerobic decomposition experiments at 8 °C and moisture close to field capacity in soils from two sites with different microbial activities (spodic dystric Cambisols with moder (SLB) and mor‐moder (SLS) layers) using 13C‐depleted plants of differing decomposability (Epilobium angustifolium and Calamagrostis epigeios). Additionally, we investigated the DOC transformation during soil passage in decomposition experiments and in the field for the sites SLB and SLS. For SLS, decomposition of Epilobium resulted in a cumulative CO2 production of 14% of the added C within 128 days. Priming effects were negligible. CO2 production for the experiments using Calamagrostis was less with 11% for SLB and 10% for SLS. Cumulative DOC production was markedly high in the Epilobium decomposition experiment, being 25 g m–2, out of which 11 g m–2 were Epilobium‐derived (2% of the added C). For the Calamagrostis experiments, cumulative productions of DOC and Calamagrostis‐derived DOC (0.1% of the added C for SLS and SLB) were much less. During the soil passage, much of the DOC was removed by sorption or decomposition processes. Field studies at SLS and SLB using 13C natural abundance showed that 13C distribution of soil organic matter increased with depth, probably mainly due to a discrimination of C isotopes by decomposing microorganisms. DOC, however, showed a depletion of 13C from –28γ PDB to –29γ (SLB at 40 cm) or –28 to –30γ (SLS at 20 cm) with depth, owing to preferential decomposition of 13C‐enriched substances or preferential adsorption. This study indicates that DOC production is strongly affected by litter composition and that significant changes in DOC composition may occur during its passage through a soil depth of 40 cm.  相似文献   
7.
Carbon Turnover by Respiration in the River Ilm (Thuringia, Germany) In the river Ilm, the organic carbon content of water and sediments was analyzed inclusively the C turnover by CO2-respiration with IR-measurement. A comparison of the unpolluted rhithral (headwater) with the polluted epipotamal (lower course) gives downstream an increase of DOC and CO2-respiration of 50...100 mg/(m3 · h) C. In the headwater region, the respiration of the sediments is dominant, in the underflow the respiration of the water. Permeable sand and gravel beds are important for the degradation of the organic load. The sediments of the river are covered with a biofilm of 1...2 g/m2 Corg. A turnover of the Corg. content from 20...400 days is calculated by the respiration measurements.  相似文献   
8.
In this paper, size‐exclusion chromatography (SEC) was used to determine the metal concentration in different size fractions of a bog lake water. Two methods were applied: (a) preparative SEC with off‐line metal concentration analysis and (b) direct coupling of an analytical SEC system on‐line with an inductively‐coupled plasma mass spectrometer (ICP‐MS). In the preparative SEC measurements, maximum concentrations were found for different metal ions in different size fractions of the natural organic matter (NOM). Normalization of metal concentrations to dissolved organic carbon concentration (DOC) yielded two maxima in the high and in the very low molecular‐weight fractions. Whereas good recoveries were found for Al, Fe, and Ni, only 40% were obtained for Pb. This indicates that Pb formed labile complexes with NOM, and hence could strongly interact with the column material. In the experiments with the analytical SEC‐ICP‐MS system, the same trends were observed, but with even lower recoveries than in the preparative system. Sample preconcentration and storage were also investigated with respect to decrease in metal concentration. During the ultrafiltration preconcentration step Al and Fe were removed only to a small extent, whereas about half of the initial Pb was lost. This indicates that Al and Fe were mainly bound to high molecular‐weight fractions of NOM. In contrast to that, Al and in particular Fe were removed from solution more than proportionally with respect to DOC because of aggregation of the NOM during storage, whereas Pb and Ni were concentrated relative to the DOC.  相似文献   
9.
The optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Meiliang Bay of Lake Taihu were evaluated and compared to the results in literature. Concentrations of dissolved organic carbon (DOC) ranged from 8.75 to 20.19 mg L?1 with an average of (13.10 ± 3.51) mg L?1. CDOM absorption coefficients a(λ) at 280 nm, 355 nm, and 440 nm were in the range 11.28...33.46 m?1 (average (20.95 ± 5.52) m?1), 2.42...7.90 m?1 (average (4.92 ± 1.29) m?1), and 0.65...2.44 m?1 (average (1.46 ± 0.44) m?1), respectively. In general, CDOM absorption coefficient and DOC concentration were found to decrease away from the river inflow to Meiliang Bay towards the lake center. The values of the DOC‐specific absorption coefficients a*(λ), given as absorption coefficient related to mass concentration of organic carbon (C) ranged from 0.28 to 0.47 L mg?1 m?1 at 355 nm. The determination coefficients between CDOM absorption and DOC concentration decreased with the increase of wavelength from 280 to 550 nm. The linear regression relationship between CDOM absorption at 280 nm and DOC concentration was following: a(280 nm) = 1.507 L mg?1 m?1 · DOC + 1.215 m?1. The spectral slope S values were dependent on the wavelength range used in the regression. The estimated S values decreased with increasing wavelength range used. A significant negative linear relationship was found between CDOM absorption coefficients, DOC‐specific absorption coefficients and estimated S values especially in longer wavelength range. The linear regression relationship between DOC‐specific absorption coefficients at 440 nm and estimated S values during the wavelength range from 280 to 500 nm was following: a*(440 nm) = (–0.021 μm · S + 0.424) L mg?1 m?1.  相似文献   
10.
Sixteen samples of fulvic acids and XAD‐4 fractions of riverine, estuarine, coastal, and open ocean origin have been studied by emission and synchronous molecular fluorescence spectroscopy. Certain features of the molecular fluorescence are related to the nature, the content, and the origin of those aquatic humic substances (HS). Riverine HS appear several times richer in fluorophores than marine HS, which can be well observed by emission fluorescence spectroscopy. Synchronous‐scan spectra of fulvic acids and of XAD‐4 fractions from the aquatic environments studied, emphasized the quality differences of their fluorophores. These features are useful as tracers of humic substances related with their natural environment source or even with their anthropogenic origin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号