首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   1篇
  2014年   1篇
  2011年   1篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Abstract: Soil water retention curves (SWRCs) provide an important means of describing the response of unsaturated soils during drying / wetting processes in terms of variations of degree of saturation, water content or void ratio with suction. A key consideration in generating these curves is how to measure the suction. Frequently the filter paper technique is adopted, especially when high suctions are developed, e.g. with plastic clays. As each measurement takes at least a week with this technique, it can take months or years to generate a full SWRC in drying and wetting. Developments in laboratory tensiometers now allow matrix suctions up to about 1.5 MPa to be measured. With such a device it is possible to develop SWRCs for granular soils such as silts and clays in hours or days by continuous measurement. This paper describes an experimental set-up that was developed to measure changes in volume, water content and matrix suction during drying of three granular soils. Limitations of the apparatus and usefulness of the curves are discussed.  相似文献   
2.
This study aims at monitoring the behaviour of the rainfall, runoff, drainage, soil water storage, and evapotranspiration variables involved in the water balance measured by lysimeter data. The evaluation of the water balance considered different time scales, where the components were monitored daily and in 10‐day accumulated period intervals. The results demonstrated that in wet periods the soil water content was greater at a depth of 10 cm, whereas in the dry periods a greater concentration was observed at 70 cm depth. At the depth of 30 cm, the lowest values of soil water content were observed for both wet and dry periods. The results, obtained through the use of tensiometers and time domain reflectometry installed internally and externally to the lysimeter, were very close, which was more noticeable during the periods of lower water loss by the soil. The water balance, calculated from the lysimeter data, demonstrated that 70% of the total rainfall was lost by the process of evapotranspiration. The drainage accounted for 27·5% of the precipitated water, highlighting the fact that this component should not be disregarded in the water balance calculation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
The processes of water movement through the Coombe Deposit in a chalk dry valley near Eastbourne in Southeast England were investigated using simple methods based on regular weekly measurements of rainfall, soil water content, and soil water potential. The drainage flux (recharge) through the soil was determined using the water balance method during the winter and the zero flux plane (ZFP) method after the appearance of the ZFP in the spring. The unsaturated hydraulic conductivity was derived applying Darcy's Law in a novel way using the measured potential gradients and weekly drainage fluxes. The derived conductivity characteristics were adequate to identify the flow mechanisms, to illustrate the difference in behaviour between the horizons of the soil profile, and to give some indication of pore water velocities. The mean daily drainage flux at 2.85 m depth during the recharge period from 10 October 1980 to 29 May 1981 was 1.6 mm d?1. Weekly mean rates of up to 3.7 mm d?1 were observed, but peak short term rates must have considerably exceeded this figure. It was shown that, in the lower part of the Coombe Deposit, when drainage fluxes are large, much of the flux passes through a very small proportion of the wetted cross-sectional area of the soil. This gives rise to pore water velocities of at least 3 m d?1 at a depth of 2.85 m and 0.5 m d?1 between 0.5 m and 2.5 m depth. These results show that pollutants may be moved very rapidly through the profile in this, and similar, material. The core sampling techniques normally used to monitor pollutant movement in the chalk are unlikely to succeed in detecting this movement, not only because it is transient but also because it occupies only a very small proportion of the water filled pores.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号