首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地球物理   1篇
地质学   2篇
  2015年   1篇
  2014年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
The generation of bulk petroleum, liquid and gaseous hydrocarbons from the Duvernay Formation was simulated by heating immature kerogens in a closed system (MSSV pyrolysis) at four different heating rates (0.013, 0.1, 0.7 and 5.0 K/min). Using the established parallel reaction kinetic model, temperature and compositional predictions were tested to be suitable for geological conditions by comparing the laboratory results with natural changes in source bitumens and reservoir oil maturity sequences from the Duvernay Formation. In the case of bulk liquid and gaseous hydrocarbons, the above kinetic calculations can be considered valid because their maximum yields are independent of laboratory heating rates. In contrast, the contents of paraffins, aromatics and sulfur compounds show a pronounced heating rate dependence. Extrapolated to geological heating rates, the compositional predictions are consistent with the bulk composition of natural products in the Duvernay-petroleum system showing an increase of paraffinicity and hydrogen content. In contrast to that, the “hump” decreases with decreasing heating rate, a trend which is confirmed by the low amounts of unresolved compounds in natural high maturity products. Because of these heating-rate dependent compositional changes, geological predictions of natural molecular composition by the commonly used kinetic models are not suitable.  相似文献   
2.
The aromatic carbon structure is a defining property of chars and is often expressed with the help of two concepts: (i) aromaticity and (ii) degree of aromatic condensation. The varying extent of these two features is assumed to largely determine the relatively high persistence of charred material in the environment and is thus of interest for, e.g., biochar characterization or carbon cycle studies. Consequently, a variety of methods has been used to assess the aromatic structure of chars, which has led to interesting insights but has complicated the comparison of data acquired with different methods. We therefore used a suite of seven methods (elemental analysis, MIR spectroscopy, NEXAFS spectroscopy, 13C NMR spectroscopy, BPCA analysis, lipid analysis and helium pycnometry) and compared 13 measurements from them using a diverse sample set of 38 laboratory chars. Our results demonstrate that most of the measurements could be categorized either into those which assess aromaticity or those which assess the degree of aromatic condensation. A variety of measurements, including relatively inexpensive and simple ones, reproducibly captured the two aromatic features in question, and data from different methods could therefore be compared. Moreover, general patterns between the two aromatic features and the pyrolysis conditions were revealed, supporting reconstruction of the highest heat treatment temperature (HTT) of char.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号