首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2019年   1篇
  2018年   1篇
  2013年   6篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Ordovician Turquoise Bluff Slate in northeastern Tasmania is a 2?km-thick sequence of deep-marine siliceous black slates. It is dominated by meta-siltstones with bimodal grainsize distributions typical of turbidite TE-1 and TE-2 facies. The slates have high SiO2 indicating they are hemipelagites. The high Ba and V indicate they were deposited in an anoxic environment associated with high oceanic productivity. All these features are common in muddy turbidites. U–Th–Pb dating of detrital monazite and authigenic xenotime in the slates supports previous evidence that the dominant cleavage, in this unit, formed during the Benambran Orogeny. The whole-rock composition of the slates is similar to black slates in the Adaminaby Group, NSW. A review of Paleozoic whole-rock compositions from the Lachlan Orogen confirms they all have trace element contents similar to average Australian shale. However, there are subtle differences in composition. The Turquoise Bluff Slate and other Mathinna Supergroup rocks from the Eastern Tasmania Terrane have higher average Cr content than similar age turbidites from Victoria and NSW. This probably reflects a small contribution from Tasmania Cambrian ultramafic rocks in the provenance. If this were correct, northeastern Tasmania was closer to western Tasmania in the Paleozoic than other provinces of the Lachlan Orogen, southeastern Australia. Other subtle features of the whole-rock composition of Paleozoic sedimentary rocks from the Lachlan Orogen indicate it may be possible to recognise provincial variations in composition that will provide new constraints on tectonic models of southeastern Australia.  相似文献   
2.
The mountains of western and northwestern Burma consist chiefly of colossal accumulations of Palaeocene to Eocene (Arakan and Chin Hills) or Senonian to Eocene (Naga Hills) Flysch of varying, including “exotic”, facies.

The main frontal thrust zone of the Alpino‐Himalayan Tectogene lies along and within the easternmost ranges of this Indoburman system, not along the western margin (Shan Scarp) of the Sinoburman Highlands. Some of the highest mountains in the Naga Hills are “Klippen” of metamorphics lying on Flysch.

The Flysch ranges arose during the Oligocene but along the Arakan Coast there is ample evidence of an equally important earlier orogenic phase (latest Cretaceous) now almost totally buried beneath the western half of the Indoburman system and the post‐Oligocene “Argille Scagliose” and “Macigno” on‐lapping eastwards from the Bengal‐Assam embayment.

The lowlands of Central and Lower Burma do not represent a foreland feature, but an intramontane Molasse‐filled basin to which the sea retained access because of a general southerly plunge of the Alpine Tectogene. Geotec‐tonically, it is analogous to the Tibetan Plateau, not the Indo‐Gangetic lowlands.  相似文献   
3.
A new tectonic model for Tasmania incorporates subduction at the boundary between eastern and western Tasmania. This model integrates thin‐ and thick‐skinned tectonics, providing a mechanism for emplacement of allochthonous elements on to both eastern and western Tasmania as well as rapid burial, metamorphism and exhumation of high‐pressure metamorphic rocks. The west Tamar region in northern Tasmania lies at the boundary between eastern and western Tasmania. Here, rocks in the Port Sorell Formation were metamorphosed at high pressures (700–1400 MPa) and temperatures (400–500°C), indicating subduction to depths of up to 30 km. The eastern boundary of the Port Sorell Formation with mafic‐ultramafic rocks of the Andersons Creek Ultramafic Complex is hidden beneath allochthonous ?Mesoproterozoic turbidites of the Badger Head Group. At depth, this boundary coincides with the inferred boundary between eastern and western Tasmania, imaged in seismic data as a series of east‐dipping reflections. The Andersons Creek Ultramafic Complex was previously thought of as allochthonous, based mainly on associations with other mafic‐ultramafic complexes in western Tasmania. However, the base of the Andersons Creek Ultramafic Complex is not exposed and, given its position east of the boundary with western Tasmania, it is equally likely that it represents the exposed western edge of autochthonous eastern Tasmanian basement. A thin sliver of faulted and metamorphosed rock, including amphibolites, partially separates the Badger Head Group from the Andersons Creek Ultramafic Complex. Mafic rocks in this package match geochemically mafic rocks in the Port Sorell Formation. This match is consistent with two structural events in the Badger Head Group showing tectonic transport of the group from the west during Cambrian Delamerian orogenesis. Rather than being subducted, emplacement of the Badger Head Group onto the Andersons Creek Ultramafic Complex indicates accretion of the Badger Head Group onto eastern Tasmania. Subsequent folding and thrusting in the west Tamar region also accompanied Devonian Tabberabberan orogenesis. Reversal from northeast to southwest tectonic vergence saw imbricate thrusting of Proterozoic and Palaeozoic strata, possibly coinciding with reactivation of the suture separating eastern and western Tasmania.  相似文献   
4.
Evolution of the southeastern Lachlan Fold Belt in Victoria   总被引:2,自引:2,他引:0  
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   
5.
A substantial database of 40Ar/39Ar ages, collected recently from micas in western and central Victoria, has been used in several recent papers as support for continuous, diachronous deformation across western and central Victoria lasting through much of the Early Palaeozoic. This paper reviews these ages, together with field evidence collected over the last ten years. It provides an alternative interpretation, that mica growth and overgrowth in western Victoria was not continuous but episodic, occurring at ca 455 Ma, 440 Ma and 425 Ma, with little or no mica growth recorded from between these times. These ages have been obtained from mica in regional cleavage, crenulation cleavage and in quartz veins, and from across the entire width of the Stawell and Bendigo structural zones of western Victoria. A sharp change in mica ages occurs at the Mt William Fault, east of which no mica growth older than about 380 Ma is recorded. Several ages used in support for diachronous deformation are not related to deformation: an 40Ar/39Ar age of 417 Ma from Chewton is from the aureole of a Devonian granite, and an age of 410 Ma from the Melbourne Zone is shown to contain a substantial amount of inherited mica. If it is accepted that mica growth can be used to date deformation, then the 40Ar/39Ar ages indicate episodic, not continuous, deformation in western Victoria (Stawell and Bendigo Zones). The sharp decrease in the deformation age in the Melbourne Zone, east of the Mt William Fault, agrees well with field evidence that shows continuous sedimentation in the Melbourne Zone in the period (Ordovician to mid‐Early Devonian) during which the Stawell and Bendigo zones were undergoing deformation. Some correlation also exists between the 40Ar/39Ar ages from western Victoria and well‐constrained deformational events in the eastern Lachlan Orogen. The pattern of deformation has important corollaries in any model that attempts to understand what drives the deformation. While plate convergence must be the ultimate driving force, the pattern is quite inconsistent with deformation of a crust that was being drawn progressively into subduction zones, as proposed in recently published models. Rather, the observed pattern suggests that deformation happened in several very brief events, probably on semi‐rigid plates.  相似文献   
6.
Recumbent folding in eastern Tasmania affected turbidites containing Lower to Middle Ordovician (Bendigonian Be1 to Darriwilian Da3) fossils, but not stratigraphically overlying turbidites containing Silurian (Ludlow) graptolites, and is of a timing consistent with Ordovician to Silurian Benambran orogenesis on the Australian mainland. Two subsequent phases of upright folding post‐date deposition of turbidites containing Devonian plant fossils but pre‐date intrusion of Middle Devonian granitoids, and are of Tabberabberan age. A closely spaced disjunctive cleavage (S2), associated with the first phase of Tabberabberan folding, everywhere cuts a slaty cleavage (S1) associated with the earlier formed recumbent folds. However, refolding associated with development of S2 is not always clear in outcrop and it is proposed that coincident tectonic vergence between the two events has resulted in reactivation of recumbent D1 structures during the D2 event. The transition to rocks not affected by recumbent folding coincides with a marked change in sedimentology from shale‐ to sand‐dominated successions. This contact does not outcrop but, from seismic data, appears to dip moderately to the east, and can only be explained as an unconformity. The current grouping of all pre‐Middle Devonian turbidites in eastern Tasmania into the one Mathinna Group is misleading in that the turbidite sequence can be subdivided into two distinct sedimentary packages separated by an orogenic event. It is proposed that the Mathinna Group be given supergroup status and existing formations placed into two new groups: an older Early to Middle Ordovician Tippogoree Group and a younger Silurian to Devonian Panama Group.  相似文献   
7.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   
8.
The Coolac Serpentinite, in the Tumut region of southeastern NSW, is one of many Alpine-type, linear ultramafic bodies exposed in the Lachlan Orogen of New South Wales. Despite the significance of such oceanic lithosphere throughout the orogen to tectonic models, few studies on the genesis of these bodies in the Lachlan Orogen have been documented. A significant proportion of the Coolac ultramafic rocks are only partially serpentinised, making them good candidates for detailed petrological and geochemical studies. The Coolac peridotites include harzburgites with mineral compositions and bulk-rock REE concentrations similar to abyssal peridotites. Assuming depleted mantle compositions, HREE concentrations are limited (0.2–0.3 × primitive mantle) implying melt extraction of 15–20%. Conversely, some Cr-spinel data within the harzburgites (Cr# = 0.22–0.27) indicate partial melting of only 9–11%. Adsorbed mantle pyroxenes, excess olivine and LREE enrichment suggest melt–rock interactions led to the refertilisation of the harzburgites. Isotope characteristics of a ca 501 Ma allochthonous tonalite block derived from melting of altered oceanic crust and a ca 439 Ma oceanic granite intrusion indicate an identical source that separated from the fertile mantle at 660 Ma. This places chronological constraints on the harzburgites, which are the result of two-stage melting involving a lherzolite protolith formed during the break-up of Rodinia followed by harzburgite formation during a further melt extraction event within an extensional phase of the Delamerian Orogeny. The harzburgites were enriched via melt–rock interactions soon after formation as well as during phases of the Benambran Orogeny beginning at ca 439 Ma and ending around ca 427 Ma with the emplacement of the North Mooney Complex, a layered ultramafic–gabbro association that has characteristics of Alaskan-style intrusions similar to the Fifield complexes of the central Lachlan Orogen.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号