首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
地球物理   1篇
地质学   21篇
海洋学   4篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   6篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2003年   2篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
A geological study of the hitherto poorly described Neoproterozoic Gifberg Group, with emphasis on lithogeochemistry and O, C and Sr isotopic composition of the carbonate-dominated Widouw Formation (Vredendal Outlier, westernmost South Africa) revealed that the entire group is an equivalent of the relatively well constrained Port Nolloth Group in the external, paraautochthonous part of the Pan-African Gariep Belt further north. Thus, the Vredendal Outlier can be regarded as the southern extension of the Port Nolloth Zone. Two diamictite units are recognised in the Vredendal Outlier, which can be correlated respectively with the c. 750 Ma Kaigas Formation diamictite and the 583 Ma, syn-Gaskiers Numees Formation diamictite in the Gariep Belt proper. The dominating carbonate unit in the studied area is post-glacial with respect to the older of the two diamictite units. The combined textural, structural and geochemical evidence suggests that parts of the variably dolomitised limestone succession represent former evaporite beds. Sedimentation in a restricted, very shallow and proximal basin led to a wide range in C isotope ratios (δ13CPDB from − 4.2 to + 4.8‰), very high Sr concentrations (derived from original anhydrite) and initial 87Sr/86Sr ratios that are significantly higher (0.70785) than those of coeval seawater. As C and Sr isotopes are commonly used for chemostratigraphic correlation, and high Sr concentrations in Neoproterozic carbonates are often interpreted as evidence of former aragonite, the findings of this study should be used as warning against uncritical use of geochemical and isotopic parameters for describing ancient seawater composition. Thus C and Sr isotope ratios alone in Neoproterozoic carbonates may be less powerful proxies of ancient seawater composition, and high Sr contents are not necessarily indicative of an “aragonite sea”, as previously inferred.  相似文献   
2.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   
3.
4.
The results of the geochemical investigation on bulk sediment fromthree cores collected in Albano crater lake (Central Italy) are reported, andthe main markers of the palaeoenvironmental changes in the last 26ka are discussed. The sediment of Lago Albano consists of greysilt and mud, and is made of volcanogenic, calcareous, siliceous and organicmaterial. Some tephra layers provide a chronological framework for thesequence. The chemical features of the sediments are strongly impacted by theAlban Hills volcanism (Roman volcanic area), but there are also strong changesof organic/inorganic matter ratios, owing to variations in biologicalproductivity and terrigeous supply from the catchment. Six chemostratigraphiczones record the main steps of the transition from the cold and dry climate ofGlacial Maximum to the warmer and more humid Holocene climate. The most usefulgeochemical indices are: biogenic silica, CO2, Br and organiccontent (OM) for biological productivity; Al, Y, CIA (Chemical Index ofAlteration), Al/Rb, Ti/Zr and Y/Al ratios for terrigenous clasticmaterial; OM/Al ratio for organic/terrigenous ratio; S/Fe andMo/Fe ratios and Authigenic U for redox diagenetic conditions of the lakesediment. The geochemical records agree rather well with those of thelithological and paleomagnetic studies, and despite the information obtainedare less detailed than those acquired by the study of biological remains, thepalaeoenvironmental significance inferred is consistent. A comparison of thechemostratigraphic results of Lago Albano with those obtained on coevalsediments from Central and Southern Italy lakes supports the role of thegeochemical investigation as important complement to more sophisticatedtechniques in the palaeoenvironmental reconstructions.  相似文献   
5.
Neoproterozoic chemostratigraphy   总被引:3,自引:0,他引:3  
Chemostratigraphy has diverse applications to investigating the rock record, such as reconstructing paleoenvironments, determining the tectonic setting of sedimentary basins, indirect dating, and establishing regional or global correlations. Chemostratigraphy is thus an integral component of many investigations of the ancient sedimentary record. In this contribution, we review the principle inorganic geochemical methods that have been applied to the Neoproterozoic sedimentary record. Analysis of the traditional stable and radiogenic isotope systems, such as δ13C, δ18O, δ34S, and 87Sr/86Sr, is routine, particularly in successions rich in carbonate. These mainstay applications have yielded invaluable data and information bearing on the chronology and evolution of this eventful era in Earth history. Alongside the growing database of traditional data, a series of novel geochemical techniques have given rise to important new models and constraints on Neoproterozoic biogeochemical change. In particular, a range of proxies for water column redox, mainly obtained from black shales, have shed light on the pace and tempo of Neoproterozoic oxygenation and its link to the appearance of early animal evolution. Increased integration of diverse geochemical, sedimentological, and paleontological datasets, and the gradual radiometric calibration of the stratigraphic record promise to bring the details of the evolution of the Neoproterozoic Earth system into ever greater focus.  相似文献   
6.
The Corumbá Group, cropping out in the southern Paraguay Belt in Brazil, is one of the most complete Ediacaran sedimentary archives of palaeogeographic, climatic, biogeochemical and biotic evolution in southwestern Gondwana. The unit hosts a rich fossil record, including acritarchs, vendotaenids (Vendotaenia, Eoholynia), soft-bodied metazoans (Corumbella) and skeletal fossils (Cloudina, Titanotheca). The Tamengo Formation, made up mainly of limestones and marls, provides a rich bio- and chemostratigraphic record. Several outcrops, formerly assigned to the Cuiabá Group, are here included in the Tamengo Formation on the basis of lithological and chemostratigraphical criteria. High-resolution carbon isotopic analyses are reported for the Tamengo Formation, showing (from base to top): (1) a positive δ13C excursion to +4‰ PDB above post-glacial negative values, (2) a negative excursion to −3.5‰ associated with a marked regression and subsequent transgression, (3) a positive excursion to +5.5‰, and (4) a plateau characterized by δ13C around +3‰. A U-Pb SHRIMP zircon age of an ash bed interbedded in the upper part of the δ13C positive plateau yielded 543 ± 3 Ma, which is considered as the depositional age ( Babinski et al., 2008a). The positive plateau in the upper Tamengo Formation and the preceding positive excursion are ubiquitous features in several successions worldwide, including the Nama Group (Namibia), the Dengying Formation (South China) and the Nafun and Ara groups (Oman). This plateau is constrained between 542 and 551 Ma, thus consistent with the age of the upper Tamengo Formation. The negative excursion of the lower Tamengo Formation may be correlated to the Shuram–Wonoka negative anomaly, although δ13C values do not fall beyond −3.5‰ in the Brazilian sections. Sedimentary breccias occur just beneath this negative excursion in the lower Tamengo Formation. One possible interpretation of the origin of these breccias is a glacioeustatic sea-level fall, but a tectonic interpretation cannot be completely ruled out.  相似文献   
7.
《Comptes Rendus Geoscience》2019,351(7):461-476
The Deccan Volcanic Province has been considered as one of the largest magmatic regions, involving an aerial coverage of ca. 500,000 km2. It is subdivided into four sub-provinces, and holds a unique position in global tectonic models for understanding earth's geodynamics and the impact of voluminous eruptions on the contemporary biosystem and climate system. Published stratigraphic data suggest that volcanic eruption took place from 69 to 64 million years (Ma) ago when the Indian plate passed over the Réunion hotspot. The main phase of volcanic activity consisting of about 80% of total basaltic lava, erupted rapidly, during a short span (<1 Ma) or even less (two or three hundred thousand years), close to chron 29R, straddling to the Cretaceous–Paleogene (K–Pg) boundary. Recent high-precision age data show that the main volcanic phase is genetically linked to the Chicxulub impact and plume-head of the hotspot, and largely contributed to the end-Cretaceous mass extinction. To assess the links of the province to the K–Pg boundary, Chicxulub impact, Réunion plume, and Late Cretaceous global climate crisis, it is crucial to have a current state of knowledge of the understanding of its stratigraphy. A review of published data shows a surge in the province research that has considerably advanced the understanding of its stratigraphy. This province is intercalated with numerous infra- and intertrappean sedimentary beds that have yielded diverse biota, providing a reliable relative time control for duration of the volcanic activity. This paper presents a review of the stratigraphic developments of the province (lithostratigraphy, chemostratigraphy, magnetostratigraphy, and chronostratigraphy) from the very beginning to the present, and discusses the role of the Réunion plume in its formation.  相似文献   
8.
Large carbon cycle perturbations associated with the Middle Permian (Capitanian) mass extinction have been widely reported, but their causes and timing are still in dispute. Low resolution carbon isotope records prior to this event also limit the construction of a Middle Permian chemostratigraphic framework and global or local stratigraphic correlation, and hence limit our understanding of carbon cycle and environmental changes. To investigate these issues, we analyzed the 13Corg values from the Middle Permian chert-mudstone sequence (Gufeng Formation) in the Lower Yangtze deep-water basin (South China) and compared them with published records to build a chemostratigraphic scheme and discuss the underlying environmental events. The records show increased δ13Corg values from late Kungurian to early Guadalupian, followed by a decrease to the late Wordian/early Capitanian. The early-mid Capitanian was characterized by elevated δ13Corg values suggesting the presence of the “Kamura Event”: an interval of heavy positive values seen in the δ13Ccarb record. We propose that these heavy Capitanian δ13C values may be a response to a marked decline in chemical weathering rates on Pangea and associated reduction in carbonate burial, which we show using a biogeochemical model. The subsequent negative δ13C excursion seen in some carbonate records, especially in shallower-water sections (and in a muted expression in organic carbon) coincide with the Capitanian mass extinction may be caused by the input of isotopically-light carbon sourced from the terrestrial decomposition of organic matter.  相似文献   
9.
Little is known about the impact of the mid-Cretaceous Oceanic Anoxic Events (OAEs) on the neritic carbonate systems in South America. In order to fill this knowledge gap, the present paper reports on the record of environmental changes in the Albian–Turonian neritic carbonates from the western South American domain in Peru. Owing to the very expanded and well-exposed sections in the Oyon region of central Peru, the OAE 1d and 2 intervals were sampled at high temporal resolution for both bulk micrite and bulk organic matter carbon isotopes, allowing us to compare the fingerprint of these two events between the northern and central Peruvian regions. This suggests the installation of two marked depositional modes: 1) the Albian–Turonian formation of a regional facies belt constituted by oyster-rich mixed siliciclastic-carbonate deposition along the western South America platform; 2) a restricted oligotrophic environment, characterized by the mass occurrence of Perouvianella peruviana and associated miliolids in central Peru during the late Cenomanian–Turonian. These observations advocate for the following scenario: Global warming during the late Albian–early Turonian resulted in humid climate on the western platform. This in turn caused enhanced chemical weathering rates on the Brazilian Shield, resulting in high runoff of nutrients onto the western platform. Nutrient runoff promoted the diversification of benthic oyster communities. Due to the uplift of the Marañon Massif and the installation of the Huarmey Trough, central Peru was isolated from the Pacific and from eastern deltaic influx of the Brazilian continental basement, allowing the local development of oligotrophic conditions during OAE 2. Furthermore, an increased influx of argillaceous sediment and reduced carbonate production is recorded in northern Peru at the onset of OAE 2, marked by a prominent negative shift in δ13C. This negative carbon-isotope excursion has also been identified in other sections in the Pacific domain and can be linked to an increase in isotopically light pCO2 induced by the formation of the Caribbean large igneous province.  相似文献   
10.
Two cap carbonates overlying glaciogenic diamictites crop out extensively in the eastern Vaza Barris Domain of the Sergipano Belt, northeastern Brazil. They are represented by carbonates of the Jacoca Formation, resting on top of diamictite of the Ribeiropolis Formation, and by the Olhos D’Agua Formation (carbonates, organic-rich towards the top), which overlies diamictite of the Palestina Formation. These two sequences were deformed and metamorphosed at sub-greenschist facies-conditions during the Brasiliano cycle (650–600 Ma).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号