首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
地球物理   10篇
地质学   14篇
海洋学   2篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
We have analyzed the stable oxygen isotopic composition of two Porites corals from the Chagos Archipelago, which is situated in the geographical center of the Indian Ocean. Coral δ18O at this site reliably records temporal variations in precipitation associated with the Intertropical Convergence Zone (ITCZ). Precipitation maxima occur in boreal winter, when the ITCZ forms a narrow band across the Indian Ocean. The Chagos then lies within the center of the ITCZ, and rainfall is strongly depleted in δ18O. A 120-yr coral isotopic record indicates an alternation of wet and dry intervals lasting 15 to 20 yr. The most recent 2 decades are dominated by interannual variability, which is tightly coupled to the El Niño-Southern Oscillation (ENSO). This is unprecedented in the 120 yr of coral record. As the ITCZ is governed by atmospheric dynamics, this provides evidence of a major change in the coupled ENSO-monsoon system.  相似文献   
2.
Corals and reef environments are under increased stress from anthropogenic activities, particularly those in the vicinity of heavily populated areas such as the Florida Keys. The potential adverse impacts of wastewater can affect both the environment and human health; however, because of the high decay rate of bacterial indicators in coral reef waters it has been difficult to document the presence of microbial contaminants and to assign risks in these environments. Here we show initial evidence that microorganisms associated with human feces are concentrated along the surface of coral heads relative to the overlying water column in the Florida Keys. Bacterial indicators (fecal coliform bacteria, enterococci or Clostridium perfringens) were detected in 66.7% of the coral surface microlayer (CSM) samples at levels between five and 1000 CFU/100 ml, but were found infrequently and at low numbers in the overlying water column ( < or = 2.5 CFU/100 ml). Similarly, enterovirus nucleic acid sequences, an indicator of human-specific waste, were detected in 93.3% of the CSM samples and only once in the water column by cell culture. Results show that coral mucus may accumulate enteric microorganisms in reef environments, and may indicate a risk to public and environmental health despite low indicator levels in the surrounding water.  相似文献   
3.
Temperature-induced mass coral bleaching causing mortality on a wide geographic scale started when atmospheric CO2 levels exceeded ∼320 ppm. When CO2 levels reached ∼340 ppm, sporadic but highly destructive mass bleaching occurred in most reefs world-wide, often associated with El Niño events. Recovery was dependent on the vulnerability of individual reef areas and on the reef’s previous history and resilience. At today’s level of ∼387 ppm, allowing a lag-time of 10 years for sea temperatures to respond, most reefs world-wide are committed to an irreversible decline. Mass bleaching will in future become annual, departing from the 4 to 7 years return-time of El Niño events. Bleaching will be exacerbated by the effects of degraded water-quality and increased severe weather events. In addition, the progressive onset of ocean acidification will cause reduction of coral growth and retardation of the growth of high magnesium calcite-secreting coralline algae. If CO2 levels are allowed to reach 450 ppm (due to occur by 2030-2040 at the current rates), reefs will be in rapid and terminal decline world-wide from multiple synergies arising from mass bleaching, ocean acidification, and other environmental impacts. Damage to shallow reef communities will become extensive with consequent reduction of biodiversity followed by extinctions. Reefs will cease to be large-scale nursery grounds for fish and will cease to have most of their current value to humanity. There will be knock-on effects to ecosystems associated with reefs, and to other pelagic and benthic ecosystems. Should CO2 levels reach 600 ppm reefs will be eroding geological structures with populations of surviving biota restricted to refuges. Domino effects will follow, affecting many other marine ecosystems. This is likely to have been the path of great mass extinctions of the past, adding to the case that anthropogenic CO2 emissions could trigger the Earth’s sixth mass extinction.  相似文献   
4.
Two coralgal patch reefs of the Hauterivian Llàcova Formation (Maestrat Basin, eastern Spain), exposed at two consecutive stratigraphic levels within a single section, have been studied to document taxonomic implications of a changing environment. These two reefal palaeocommunities differ substantially in coral taxonomic composition, microbialite formation pattern and in abundance and composition of encrusters and bioeroders. Of a total of 14 coral species, just one (Stylina parvistella) occurs in both reefs, yet is abundant in the (lower) reef A and rare, occurring near the reef base, in the reef B assemblage. Reef A is dominated by a phototrophic fauna and coral species with small corallites and imperforate septa (a stylinid-thamnasteriid-heterocoeniid-actinastreid association), along with an encruster association dominated by Bacinella and Lithocodium. Reef B is characterised by a balanced phototrophic-heterotrophic fauna that gradually passes into a heterotrophic-dominated assemblage. During this latest growth stage, microsolenid corals dominated the assemblage. The encruster fauna is characterised by sponges, polychaetes and bryozoans. Moderate deepening during a transgressive systems tract (TST) depositional sequence and elevated nutrient supply are interpreted to represent the driving environmental parameters that caused faunal compositions to differ between these two reefal palaeocommunities. Nine coral taxa, previously known only from younger (Barremian–Cenomanian) strata, have been identified, namely Dimorphocoenia? rudis, Eocomoseris raueni, Eocomoseris sp., Holocoenia jaccardi, Latusastrea irregularis, Mesomorpha sp., Microsolena kugleri, Polyphylloseris mammillata and Polyphylloseris sp. This observation emphasises the importance of the Hauterivian Stage as a period of evolutionary transition in Late Jurassic–Cretaceous coral faunas.  相似文献   
5.
The HadISST1 sea surface temperature data set is examined for two contrasting areas: the Chagos Archipelago, central Indian Ocean which has a small (approximately 3 degrees C) annual temperature fluctuation, and Abu Dhabi in the southern Arabian Gulf whose annual air temperature fluctuation of approximately 24 degrees C is the largest known for coral reef habitats. The HadISST1 data are shown to match air temperature records closely, both in terms of annual moving averages and residual analysis. Temperatures in 1998 caused massive mortality of corals in the Indian Ocean: sea surface temperature (SST) values causing this were 33.8 degrees C in the Arabian Gulf at a time when average daily air temperature was over 40 degrees C, while in Chagos the SST lethal to corals was 29.8-29.9 degrees C, when air temperatures peaked at about 31 degrees C. The HadISST1 record was searched back to 1870 for previous abnormal peaks: one of 29.7 degrees C was found for Chagos SST in 1972, though this did not cause coral mortality. Analysis of 12-month running means of the residuals from the annual cycle show that, between 1870 and 1999, the largest SST deviations occurred between October 1997 and May 1998 in Chagos and between August 1998 and July 1999 near Abu Dhabi. The event of 1998-1999 was the largest in these regions for at least 130 years. SSTs have risen over the last three decades at rates of about 0.22 degrees or 0.23 degrees per decade in both locations.  相似文献   
6.
7.
In a recently published paper, Agardy et al. [Mind the gap: addressing the shortcomings of marine protected areas through large scale marine spatial planning. Marine Policy 2011;35:226-32] discuss the shortcomings of several Marine Protected Areas (MPAs) including the Gully MPA, located 200 km offshore Nova Scotia, Canada. Although the paper's critical assessment of MPA effectiveness was welcomed, the Gully MPA received an out-of-date profile resulting in an erroneous analysis of current protection levels. This short communication has been written to set the record straight.  相似文献   
8.
The Ba/Ca in the growth bands of Montastraea faveolata from the Veracruz Reef System was used to reconstruct the long-term environmental change associated to anthropogenic activity in the Southern Gulf of Mexico (SGM). The 168-yr coral record shows two periods of distinct Ba concentrations: a pre-industrial period (1835-1965: 7.54 μmol/mol) followed by an industrial one (1966-2000: 8.57 μmol/mol). As human population quadrupoled during the latter, sediment load in the fluvial discharge also increased due to changes in land-use, yielding a 14% increase in the Ba-levels. A remarkable finding is that the periods at which the coral Ba/Ca ratio losses its correlation with fluvial discharge coincide exactly with peak periods of high barite consumption (used for oil drilling) in the Northern Gulf of Mexico, and the onset of oil drilling in the SGM. This finding suggests that barite may be one of the dominant sources for dissolved-Ba in the SGM.  相似文献   
9.
A relatively low diversity coral fauna comprising eight zooxanthellate, three azooxanthellate, and one unidentified species is described from a Late Cretaceous rocky shore at Ivö Klack, southern Sweden. All species, except the solitary azooxanthellate Paracyathus? sp., are represented by one or two specimens only, indicating low preservation potential similar to the aragonite-shelled gastropod fauna from the same locality. The fauna comprises one out of two northernmost zooxanthellate forms known and adds important environmental information to the fauna and depositional conditions of the rocky shore at Ivö Klack.  相似文献   
10.
Human-induced pollution in coastal areas can significantly increase the concentration of some trace elements in the marine environment. In the tropics, scleractinian corals incorporate these trace elements in their living parts and skeleton. The potential of corals to monitor pollution through time is reviewed in this contribution. The strength and weakness of corals as pollution indicators are discussed, and a few examples are shown. Although some progress should be made in the understanding of the processes ruling the incorporation of trace elements in coralline aragonite, it is concluded that large environmental changes are well recorded by coral skeletons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号