首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite–prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution–reprecipitation. Zircon coronas on Fe–Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.  相似文献   
2.
Coronitic textures are common in partially eclogitized igneous bodies, such as gabbros, leucogabbros, and anorthosites, east of the Germania Land Deformation Zone in North-East Greenland. Coronas formed by prograde metamorphic processes that transformed the gabbroic bodies to eclogite facies, and record frozen stages of the prograde metamorphic evolution of these rocks. A metaleucogabbro-norite body on Bourbon Island in Jøkelbugt is characterized by three concentric areas: a coronitic core, a mottled inner rim with areas of completely eclogitized material surrounded by a matrix of coronitic metaleucogabbro, and an outer rim of strongly foliated and completely retrogressed amphibolite. The Bourbon body preserves four stages of the prograde metamorphic history: Stage I, Stage II, Stage III, and Eclogite Stage. Stage I coronas are found only in the core of the body, which is the least reacted part of the leucogabbro-norite and the closest to the protolith, and is characterized by the corona sequence Plrim/Grt + Kfs + Amp/Grt + Amp/Cpxrim. The typical corona sequence for Stage II is Plrim/Grt + Pl + Zo/Cpxrim/Amprim. Stage III samples show a Plrim + Ky + Scp/Grt + Pl + Qtz/Qtz + Pl sequence, with the relict clinopyroxene being replaced in part by microcrystalline aggregates of Cpx + Amp + Pl. The Eclogite Stage shows relict Pl completely replaced by Grt, and the relict Cpx completely replaced by aggregates of Omp + Pl + Kfs + Amp. We tested open-system grain boundary diffusion (OSGBD) theories to model the prograde Stage I symplectitic coronas. The observed ratio of the thickness of the different layers is Plrim:Grt + Kfs + Amp:Grt + Amp:Cpxrim equal to 3:1.3:0.95:0.5. These ratios are very close to the modeled ones of 2.7:1.1:1:0.5. Furthermore, subtle textural changes within the Grt + Kfs + Amp corona were also reproduced by the model. The model gave us insight into the conditions of the metamorphic system in which the coronas formed. The sequence Plrim/Grt + Kfs + Amp/Grt + Amp/Cpxrim formed by diffusion driven reactions in an open system involving gain of Fe, K, and Na, and loss of Ca and Mg at the original clinopyroxene–plagioclase boundary. Relative mobilities of the different components within the corona layers were LMgMg > LAlAl > LSiSi > LCaCa > LKK > LFeFe > LNaNa. Fluid circulation was active to some degree during the transformation to eclogite. The differences between core, inner rim, and the two domains within the inner rim of the metaleucogabbro-norite can be explained by different degrees of fluid circulation in different portions of the rock. The presence of phases containing Cl and P, such as scapolite, in completely eclogitized samples supports the presence of fluid circulation in the system. Another possible explanation for the mottled appearance of the inner rim is protolith heterogeneity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号