首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   7篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Molecular dynamics (MD) modeling of the 10-Å phase, Mg3Si4O10(OH)2·xH2O, with x=2/3, 1.0 and 2.0 shows complex structural changes with pressure, temperature and water content and provides new insight into the structures and stabilization of these phases under subduction zone conditions. The structure(s) of this phase and its role as a reservoir of water in the mantle have been controversial, and these calculations provide specific predictions that can be tested by in situ diffraction studies. At ambient conditions, the computed structures of talc (x=0) and the 10-Å phases with x=2/3 and 1.0 are stable over the 350-ps period of the MD simulations. Under these conditions, the 10-Å phases show phlogopite-like layer stacking in good agreement with previously published structures based on powder X-ray diffraction data for samples quenched from high-pressure and high-temperature experiments. The calculations show that the 10-Å phase with x=2.0 is unstable at ambient conditions. The computed structures at P=5.5 GPa and T=750 K, well within the known stability field of the 10-Å phase, change significantly with water content, reflecting changing H-bonding configurations. For x=2/3, the layer stacking is talc-like, and for x=1.0, it is phlogopite-like. The calculations show that transformation between these two stackings occurs readily, and that the talc-like stacking for the x=2/3 composition is unlikely to be quenchable to ambient conditions. For x=2.0, the layer stacking at P=5.5 GPa and T=750 K is different than any previously proposed structure for a 10-Å phase. In this structure, the neighboring basal oxygens of adjacent magnesium silicate layers are displaced by b/3 (about 3 Å) resulting in the Si atoms of one siloxane sheet being located above the center of the six-member ring across the interlayer. The water molecules are located 1.2 Å above the center of all six-member rings and accept H-bonds from the OH groups located below the rings. The b/3-displaced structure does not readily transform to either the talc-like or phlogopite-like structure, because neither of these stackings can accommodate two water molecules per formula unit. There is likely to be a compositional discontinuity and phase transition between the b/3-displaced phase and the phase with phlogopite-like stacking. The simulations reported here are the first to use the recently developed CLAYFF force field to calculate mineral structures at elevated pressures and temperatures.  相似文献   
2.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   
3.
Olivine crystals from two mantle nodules in kimberlites (pipe Udachnaya and pipe Obnazennaya, Yakutiya, Siberia) were investigated using EMP, TEM, AEM and FTIR techniques to determine the mode of hydrogen occurrence in olivine. Olivine contains three types of nanometer-sized inclusions: “large” inclusions of hexagonal-like shape up to several hundred nm in size (1), lamellar defects (2) and small inclusions of hexagon-like shape up to several 10?nm in size (3). Lamellar defects and small inclusions are considered to be a “hydrous” olivine. All three types of inclusions contain OH? or water, but they are different with respect to their phase composition. In “large” inclusions (1) hydrous magnesium silicates, such as serpentine?+?talc (“kerolite”?) and 10-Å phase?+?talc were identified. Lamellar defects (2) and small inclusions (3) are depleted in Mg and Fe compared to the olivine matrix, while the silica content is the same as that of olivine. Modulations in the periodicity of the olivine structure are observed in SAED patterns and HREM images of (2) and (3). The superperiodicity can be referred to OH?-bearing point defect ordering in the olivine structure. If this is the case, the material of both lamellar defects and small inclusions can be assumed to be a “hydrous olivine” Mg2– x v x SiO4H2 x with a cation-deficient olivine crystal structure. Thus, both an extrinsic mode of hydrogen occurrence in olivine, such as nanometer-sized inclusions of OH?-bearing magnesium silicates, and an intrinsic mode of hydrogen incorporation into the olivine structure, such as “hydrous olivine” in itself, were found. The data obtained here show that the OH absorption bands observed in olivine spectra at 3704(3717) and 3683(3688) cm?1 can be unambiguously identified with serpentine; the band at 3677(3676) cm?1 can be associated with talc. The absorption bands observed at 3591 and 3660?cm?1 in olivine match those of the 10-Å phase at 3594, 3662 and 3666?cm?1.  相似文献   
4.
Fe-bearing dense hydrous magnesium silicate Phase A, Mg6.85Fe0.14Si2.00O8(OH)6 has been studied by single-crystal X-ray diffraction at ambient conditions and by high-pressure powder diffraction using synchrotron radiation to 33 GPa. Unit cell parameters at room temperature and pressure from single crystal diffraction are a=7.8678 (4) Å, c=9.5771 (5) Å, and V=513.43 (4) Å3. Fitting of the P–V data to a third-order Birch-Murnaghan isothermal equation of state yields V 0=512.3 (3) Å3, K T,0=102.9 (28) GPa and K′=6.4 (3). Compression is strongly anisotropic with the a-axes, which lie in the plane of the distorted close-packed layers, approximately 26% more compressible than the c-axis, which is normal to the plane. Structure refinement from single-crystal X-ray intensity data reveals expansion of the structure with Fe substitution, mainly by expansion of M-site octahedra. The short Si2–O6 distance becomes nearly 1% shorter with ~2% Fe substitution for Mg, possibly providing additional rigidity in the c-direction over the Mg end member. K T obtained for the Fe-bearing sample is ~5.5% greater than reported previously for Fe-free Phase A, despite the larger unit cell volume. This study represents a direct comparison of structure and K T–ρ relations between two compositions of a F-free dense hydrous magnesium silicate (DHMS) phase, and may help to characterize the effect of Fe substitution on the properties of other DHMS phases from studies of the Fe-free end-members.  相似文献   
5.
 Recently, the Hy-2a hydrous olivine (MgH2 SiO4)·3(Mg2SiO4) occurring as nanometre-sized inclusions in mantle olivines has been found by TEM, and has been suggested to be a new DHMS phase (Khisina et al. 2001). A model of the crystal structure of Hy-2a has been proposed as a 2a-superstructure of olivine with one Me2+ -vacant octahedral layer in the (1 0 0) plane per Hy-2a unit cell (Khisina and Wirth 2002). In the present study the crystal structure of Hy-2a hydrous olivine is optimized by ab initio calculations. The aims of this study are: (1) verification of the suggested models of Hy-2a hydrous olivine structure; (2) calculation of the most stable configurations for Hy-2a structure with minimum static lattice energy, by assuming a possible formation of Me2+ vacancies in either M1 or M2 octahedral sites; (3) determination of the position of protons and hydrogen bonds in the Hy-2a structure. Several different possible configurations of the Hy-2a structure are optimized. The results support the idea of a stable olivine structure with ordered planar-segregated OH-bearing defects oriented parallel to (1 0 0). The data obtained indicate a preferred stability of the Hy-2a structure with the protons associated with M1 vacancies and bonded with O1 and O2 oxygen sites. The relative energy values of the optimized Hy-2a structure configurations correlate as a rule with the average shifts of atoms from their positions in pure forsterite structure. Received: 7 February 2002 / Accepted: 23 October 2002  相似文献   
6.
 We carried out a series of melting experiments with hydrous primitive mantle compositions to determine the stability of dense hydrous phases under high pressures. Phase relations in the CaO–MgO–Al2O3–SiO2 pyrolite with ˜2 wt% of water have been determined in the pressure range of 10–25 GPa and in the temperature range between 800 and 1400 °C. We have found that phase E coexisting with olivine is stable at 10–12 GPa and below 1050 °C. Phase E coexisting with wadsleyite is stable at 14–16 GPa and below 900 °C. A superhydrous phase B is stable in pyrolite below 1100 °C at 18.5 GPa and below 1300 °C at 25 GPa. No hydrous phases other than wadsleyite are stable in pyrolite at 14–17 GPa and 900–1100 °C, suggesting a gap in the stability of dense hydrous magnesium silicates (DHMS). We detected an expansion in the stability field of wadsleyite to lower pressures (12 GPa and 1000 °C). The H2O content of wadsleyite was found to decrease not only with increasing temperature but also with increasing pressure. The DHMS phases could exist in a pyrolitic composition only under the conditions present in the subducting slabs descending into the lower mantle. Under the normal mantle and hot plume conditions, wadsleyite and ringwoodite are the major H2O-bearing phases. The top of the transition zone could be enriched in H2O in accordance with the observed increase in water solubility in wadsleyite with decreasing pressure. As a consequence of the thermal equilibration between the subducting slabs and the ambient mantle, the uppermost lower mantle could be an important zone of dehydration, providing fluid for the rising plumes. Received: 9 September 2002 / Accepted: 11 January 2003 Acknowledgements The authors are thankful to Y. Ito for the assistance with the EPMA measurement, A. Suzuki, T. Kubo and T. Kondo for technical help with the high-pressure experiments and Raman and X-ray diffraction measurements and C.R. Menako for technical support. K. Litasov thanks H. Taniguchi for his continuous encouragement and the Center for Northeast Asian Studies of Tohoku University and the Japanese Society for the Promotion of Science for the research fellowships. This work was partially supported by the Grant-in-Aid of Scientific Research of the Priority Area (B) of the Ministry of Education, Science, Sport, and Culture of the Japanese government (no. 12126201) to E. Ohtani.  相似文献   
7.
Neutron powder diffraction data of phase A (Mg7Si2O8(OH)6) were collected at ambient pressure and 3.2?GPa (calculated from the compressibility of phase A) from the deuterated compound, and the structure was refined using the Rietveld method. The derived crystal structure implies that hydrogen atoms occupy two distinct sites in phase A, both forming hydrogen bonds of different lengths with the same oxygen atom. This picture is supported by IR spectra, which exhibit two absorption bands at 3400 and 3513?cm?1 corresponding to OH stretching vibrations, and proton NMR spectra, which display two peaks with equal intensities and isotropic chemical shifts of 3.7 and 5?ppm. The D-D distance [D(1)-D(2) distance] at ambient pressure was found to be 2.09?±?0.02?Å from the neutron diffraction data and 2.09?±?0.05?Å from the NMR spectra. At 3.2?GPa, there is no statistically significant increase in the O-D interatomic distance while the hydrogen bonding interaction D···O appears to increase for one of the hydrogen sites, D(1), which has the stronger hydrogen bonding interaction compared with the other hydrogen, D(2), at ambient pressure. The O-D bond valences, determined indirectly from the D···O distances were 0.86 and 0.91 at ambient pressure, and 0.83 and 0.90?at 3.2?GPa, for D(1) and D(2), respectively.  相似文献   
8.
地幔中水的研究进展   总被引:7,自引:1,他引:6  
地幔中的水水地地幔地球化学动力学、地球物理场有着重要的影响,而且对认识地内部挥发分的再循环以及整个行星地球的演化均有着关键性的科学意义。简要评述了一领域的研究进展,介绍了地幔中水的赋存状态,位置及其影响因素,并初步估算了地幔中水的含量  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号