首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   19篇
  国内免费   61篇
测绘学   13篇
大气科学   54篇
地球物理   81篇
地质学   81篇
海洋学   143篇
综合类   6篇
自然地理   68篇
  2023年   7篇
  2022年   8篇
  2021年   10篇
  2020年   9篇
  2019年   7篇
  2018年   7篇
  2017年   28篇
  2016年   29篇
  2015年   31篇
  2014年   27篇
  2013年   27篇
  2012年   22篇
  2011年   23篇
  2010年   31篇
  2009年   20篇
  2008年   34篇
  2007年   32篇
  2006年   15篇
  2005年   16篇
  2004年   13篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
1.
With recent changes in the ways that state agencies are implementing their environmental policies, the line between public and private is becoming increasingly blurred. This includes shifts from state-led implementation of environmental policies to conservation plans that are implemented and managed by multi-sectoral networks of governments, the private sector and environmental non-governmental organizations (ENGOs). This paper examines land trusts as private conservation initiatives that become part of neoliberal governance arrangements and partnerships that challenge our conceptions of environmental preservation and democratic participation. The paper starts with an examination of the concept of neoliberalized environmental governance. Next, it addresses the shifting social constructions of property and land in the context of protecting large scale ecosystems. Through a case study of the extension of new environmental governance arrangements on the Oak Ridges Moraine in Ontario, we examine the relationships that have formed between different levels of the state and environmental non-governmental organizations. Finally, we analyze the expansion of land trusts and private conservation initiatives that are predicated on private land ownership and the commodification of nature, the emerging discourses and practices of private conservation, and how these are implicated in the privatization and neoliberalization of nature.  相似文献   
2.
Information systems developed for different applications within the environmental domain have common characteristics, which can potentially be abstracted for sharing and reuse of design and software modules. This article presents an approach to designing for reuse by abstracting commonalities in the design of a Marine Information System (MIS), facilitating data management in a prototype operational monitoring, forecasting, and management system for the North Atlantic and the Nordic Seas. A detailed study of the requirements and data analysis was carried out, and Object-Oriented Technology (OOT) is employed to encapsulate abstractions and to promote reuse of code and design. This article identifies the Object-Oriented Frameworks (OOFW) required to build the MIS. It also provides guidelines to environmental scientists for restructuring legacy software and employing modern programming techniques.  相似文献   
3.
The Bering Sea is a high-latitude, semi-enclosed sea that supports extensive fish, seabird, marine mammal, and invertebrate populations and some of the world's most productive fisheries. The region consists of several distinct biomes that have undergone wide-scale population variation, in part due to fisheries, but also in part due to the effects of interannual and decadal-scale climatic variation. While recent decades of ocean observation have highlighted possible links between climate and species fluctuations, mechanisms linking climate and population fluctuations are only beginning to be understood. Here, we examine the food webs of Bering Sea ecosystems with particular reference to some key shifts in widely distributed, abundant fish populations and their links with climate variation. Both climate variability and fisheries have substantially altered the Bering Sea ecosystem in the past, but their relative importance in shaping the current ecosystem state remains uncertain.  相似文献   
4.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   
5.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Inverse analysis is increasingly used in ecosystem modelling to objectively reconstruct a large number of unknown flows or interactions from a small number of observations. This type of analysis may be useful in relating observed regime shifts in ecosystem structure to underlying processes. Inversions of ecosystem flow networks currently use a constrained least-squares solution which at the same time minimizes the squared norm (the sum of squares) of the reconstructed flows. This minimum norm (MN) inversion is thought to be a parsimonious solution to the ecosystem flow inverse problem, but it may well not reflect how ecosystems are organised. It has been proposed instead that ecosystems evolve to maximize energy/mass flows or that they maximize the information content of the network weighted by ecosystem flows (ascendancy). We used simulated inverse experiments, where inverse analyses are applied to simulations of flow networks, to explore objective functions different than the MN generally used. We could not compute inverse solutions that maximize ascendancy because the objective function is unbounded. We could calculate inversions that maximize flows; however, these generally overestimated the simulated flows, even though the simulations were designed to maximize flows. It appears that the ecosystem flow inverse problem is too under-determined (too few data relative to the number of unknowns) to allow the use of these maximizing goal functions. We introduce a new minimization that simultaneously minimizes the squared flows and the squared differences between flows. This smoothing minimization makes the inverse flows as even as possible and it helps with some technical issues with MN inversions. The simulated inverse experiments indicated that this smoothed norm (SM) is the most robust in comparative analyses of contrasting ecosystem states, such as those that can be associated with regime shifts. Like the MN inversion, the SM inversion has no ecological basis. However, it is a conservative norm that is less likely to produce false differences between the dynamics of regimes.  相似文献   
7.
通过对水库中12个围隔两次取样的叶绿素a浓度(单位:μg/L)、化学耗氧量(单位:mg·O_2/L)和塞克透明度(单位:m)的实验数据分析,求得如下回归方程: (1)[Chla]=17.60·[SD]~(-1·86) r=-0.87 (2)[Chla]=-28.85+7.32·[COD] r=0.89 (3)[COD]=6.88·[SD]~(-0·68) r=0.91本文还对这些结果进行了讨论。  相似文献   
8.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   
9.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   
10.
An overview of the Oyashio ecosystem   总被引:3,自引:0,他引:3  
The Oyashio shelf region and the seasonally ice-covered areas north of Hokkaido are highly productive, supporting a wide range of species including marine mammals, seabirds and commercially important species in the western subarctic Pacific. The fishes include gadids, such as walleye pollock and Pacific cod, and subarctic migratory pelagic fishes such as chum salmon and pink salmon. It is also an important summer feeding ground for subtropical migrants such as the Japanese sardine, Japanese anchovy, Pacific saury, mackerels, Japanese common squid, whales and seabirds. In recent decades, some components of the Oyashio ecosystem (i.e., phytoplankton, mesozooplankton, gadid fish, and subtropical migrants) have shown changes in species abundance or distribution that are correlated with environmental changes such as the 1976/1977 and 1988/1989 regime shifts. The First Oyashio Intrusion moved northward from the mid-1960s until the late 1970s, when it moved southward until the 1980s, after which it returned to the north again after the mid-1990s. The sea-surface temperature in spring decreased after the late 1970s, increased after the late 1980s, and remained high during the 1990s. The extent of ice cover in the Sea of Okhostk also decreased during the latest warming in the 1980–1990s but has increased again since the late 1990s. This and other variabilities affect the Oyashio ecosystem and the surrounding region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号