首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   5篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2002年   1篇
  2000年   1篇
  1978年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
《Sedimentology》2018,65(4):1301-1321
Aeolian dune fields evolve from protodunes and small dunes into a pattern of progressively fewer, larger and more widely spaced dunes within limits defined by boundary conditions. However, the allogenic boundary conditions that promote aeolian dune‐field development, accumulation of strata and preservation of accumulated strata are not the same. Autogenic processes, such as dune interactions, scour‐depth variation along migrating dunes and substrate cannibalization by growing dunes, result in removal of the stratigraphic record. Moreover, dune‐field events may be collapsed into major erosional bounding surfaces. The question is what stages of evolving dune fields are represented in the rock record? This case study of ca 60 m of Jurassic Entrada Sandstone on the Utah/Arizona border (USA) defines stratigraphic intervals by gross architecture of bounding surfaces and sets of cross‐strata. The interpreted intervals in stratigraphic order consist of: (i) a lower sabkha bed that transitions upward into erosional remnants of small sets representing an initial wet aeolian system; (ii) large, compound cross‐strata representing a mature dune field; (iii) isolated scour‐fill representing negatively climbing dunes that produced ca 25 m of palaeo‐topographic relief; (iv) downlapping sets that fill the landscape‐scale relief; (v) four intervals of stacked climbing sets that each represent short periods of time; and (vi) an upper sabkha bed that again transitions into small sets representing a wet system. Accumulations appear to be associated with sediment pulses, a rising water table, and filling of scoured troughs and landscape‐scale depressions. Preservation of the accumulations is selective and associated with a rising water table, burial and subsidence. The preserved record appears remarkably incomplete. Speculation about missing strata gravitates towards cannibalization of the record of early dune‐field construction, and strata removed during the formation of bounding surfaces. This local Entrada record is thought to represent a point in the spectrum of preservation styles in the rock record.  相似文献   
2.
Surveyed outcrops of the Middle Jurassic Entrada Sandstone at Ghost Ranch, New Mexico, show the unusual occurrence of preserved aeolian dune palaeotopography buried beneath subaqueous strata. The preserved dune remnants have relief up to 35 m, trend NNW, and show internal scalloped cross-strata dipping to the WSW, with small sets occurring as both topsets and bottomsets. Outcrop data are best satisfied in computer models by 50 m high, sinuous bedforms that migrated to the WSW, while the sinuosity migrated alongcrest to the NNW. Superimposed small dunes occurred upon the stoss slope, and at the basal lee of the main bedform where they migrated alongslope to the NNW. Remnant dune palaeotopography is buried by onlapping, subaqueous, largely structureless sandstones believed to be derived by mass wasting of the upper portions of the dunes and deposited as sediment-gravity flows that infilled between the dunes. Preservation of dune palaeotopography beneath mass-flow deposits, with no evidence for gradually rising water, argues that flooding of the Entrada dune field was geologically instantaneous. The thickness and lithology of the overlying Todilto Formation conform to slight remnant palaeotopography on the Entrada surface. The Todilto is a laminated limestone and thinnest over remnant dune crestal areas, but thickens and increases in gypsum content downslope until it abruptly yields to a gypsum mound positioned over a remnant interdune hollow. The Todilto laminations are interpreted as seasonal varves deposited below wave base in a density-stratified water body. The flooding event that gave rise to the controversial Todilto water body occurred during Entrada time, with Todilto deposition occurring within an already substantial water body.  相似文献   
3.
Three forms of fault are recognized in Entrada and Navajo Sandstones in the San Rafael Desert, southeastern Utah; deformation bands, zones of deformation bands, and slip surfaces. Small faults occur asdeformation bands, about one millimeter thick, in which pores collapse and sand grains fracture, and along which there are shear displacements on the order of a few millimeters or centimeters. Two or more deformation bands adjacent to each other, which share the same average strike and dip, form azone of deformation bands. A zone becomes thicker by addition of new bands, side by side. Displacement across a zone is the sum of displacements on each individual band. The thickest zones are about 0.5 m and total displacement across a thick zone rarely exceeds 30 cm. Finally,slip surfaces, which are through-going surfaces of discontinuity in displacement, form at either edge of zones of highly concentrated deformation bands. In contrast with individual deformation bands and zones of deformation bands, slip surfaces accommodate large displacements, on the order of several meters in the San Rafael Desert.The sequence of development is from individual deformation bands, to zones, to slip surfaces, and each type of faulting apparently is controlled by somewhat different processes. The formation of zones apparently involves strain hardening, whereas the formation of slip surfaces probably involves strain softening of crushed sandstone.  相似文献   
4.
Small faults formed as deformation bands in sandstone   总被引:13,自引:0,他引:13  
Small faults with displacements of a few millimeters or centimeters are abundant in the Entrada and Navajo Sandstones, in the San Rafael Desert, Utah, where they are important primary structures, preceding the development of large faults with displacements of several meters or tens of meters. The small faults contain no surfaces of discontinuity, rather they occur asdeformation bands about one millimeter and tens or hundreds of meters long, and across which the displacements are distributed. Two zones with different modes of deformation can be distinguished within a deformation band: an outer zone where the matrix, including pores and matrix material, deforms; and an inner zone, about 0.5 mm thick, where the sand grains fracture and further consolidation takes place. Fracturing of the grains is controlled by contact geometry; the grains tend to split into subgrains along lines connecting contact points between the grains. Then the angular subgrains, which are readily fractured, are further granulated and mixed with the matrix. The final product is the deformation band, with much smaller grain size, poorer sorting, and lower porosity than the original parent sandstone. The sandstone on either side of a deformation band is almost undisturbed-fractures are rare there — so that deformation is highly localized within the band. The material within a deformation band apparently strain hardens as a result of the deformation; perhaps this is why the shear displacement across a deformation band is at most a few centimeters.  相似文献   
5.
Large bodies of fluidized sandstone occur in the Jurassic Entrada, Carmel, Page and Navajo Formations at several locations in south‐central Utah. They are most abundant in the Entrada Sandstone, where they commonly occur in clusters, have a cylindrical form and have a sharp contact with their cross‐bedded host rock. These clastic pipes are as wide as 75 m and have exposed heights of as much as 100 m. Some of the Entrada pipes extend well into the underlying Carmel redbeds. Other clastic pipes in the Entrada Sandstone are less deformed and display various degrees of brittle‐to‐hydroplastic deformation and liquefaction. Clastic pipes in the Page and Navajo Sandstones are less common, but are similar in size and form to those in the Entrada and Carmel, and probably have a similar origin. Some massive sandstone bodies are irregular in form and have tongue‐like projections into the host rock, implying forcible injection of fluidized sand. Several pipe–host contacts in the Entrada Sandstone display small‐scale ring faults. Where relative displacement can be clearly demonstrated, pipe sandstones are invariably down‐faulted, locally as much as 5 m. At two sites, Carmel host rock is upwarped around the Entrada pipes. Stratified and cross‐bedded breccia blocks occur in many Entrada pipes, and preliminary petrographic analysis indicates that at least some of these breccia blocks are derived from the host rock. Homogeneous pipe sandstones are also petrographically similar to their Entrada host rock, suggesting that some pipes originate through fluidization of the fine‐grained Entrada. Fluidization of the Entrada must have occurred in a water‐saturated environment during early diagenesis but before complete lithification, most probably under considerable porewater pressure. Although there are no known modern analogues to these huge masses of structureless sandstone, they may have a small‐scale modern counterpart in earthquake‐induced sandblows. These features were most probably caused by large‐magnitude seismic events during the Middle Jurassic, although other possibilities cannot be ruled out at this point.  相似文献   
6.
The Middle Jurassic Todilto Member of the Wanakah Formation is a carbonate and gypsum unit inset into the underlying aeolian Entrada Sandstone in the San Juan Basin. Field and thin section study of the uppermost Entrada and Todilto at Ghost Ranch, New Mexico, identified Todilto facies and their relationship to remnant Entrada dune topography. Results support the previous interpretation that the Entrada dunes, housed in a basin below sea level, were rapidly flooded by marine waters. Mass wasting of the dunes gave rise to sediment‐gravity flows that largely buried remnant dune topography, leaving ca 12 m of relief that defined the antecedent condition for Todilto deposition. Previously interpreted as seasonal varves deposited in a stratified water body, the Todilto is reinterpreted as a microbial biolaminite. Most diagnostic are organic‐rich laminae with structures characteristic of filamentous microbes and containing trapped aeolian silt, and clotted‐texture laminae with a fabric associated with calcification of extracellular polymeric substances. The spatial arrangement of Todilto facies is controlled by the dune palaeotopography. A continuous basal laminated mudstone thickens over the dune crest, reflecting the optimum conditions for microbial mat development, and is interpreted to have been deposited when marine waters submerged the topography. Subsequent drying caused emergence of the crestal area, and formation of tepee structures and a dissolution breccia. Gypsiferous mudflats and periodic ponds occupied the dune flanks and interdune area, with gypsum concentrated within the interdune area. Entrada sands remained unstable during Todilto deposition with common injection structures into the Todilto, and a remnant slope caused the downslope movement and folding of Todilto strata on the upper lee face. Although some expansion of the gypsum occurred in the subsurface, facies architecture fostered development of a dissolution front adjacent to the interdune gypsum body with section collapse of gypsiferous limestone on the dune flanks.  相似文献   
7.
Sandstone‐hosted intrusions are found in a wide variety of environments, but remain poorly understood compared with their mudstone‐hosted counterparts. In particular, they remain largely unrecognized in the subsurface, in part because they are problematic to image in seismic data. This study reports on the facies and fluid flow associated with a 20 000 km3 sandstone intrusion province in Utah, USA. Forming a small portion of this intrusion province, the intrusions cropping out in Kodachrome Basin State Park display a very wide array of facies and morphologies, factors which would make their identification in core a significant challenge. Remobilized sediment is shown to have been injected at least 200 m vertically from its source, with flow prolonged enough to concentrate heavy minerals in placer‐style deposits at the pipe margins. Evidence for lateral pipe migration and for associated broader fluidization regions is also presented. A new approach to estimating flow parameters in injectites is implemented herein, and indicates that previous work has overestimated velocities and flow Reynolds numbers by up to two orders of magnitude. Flow modelling suggests turbulent flow in the pipes that is consistent with field observations of erosive margins and chaotic internal structures. Post‐emplacement, these pipes remained as long‐term fluid conduits, as revealed by their diagenetic history, focussing and facilitating flow of extraformational fluids, despite the relatively high porosity and permeability of the aeolian host strata.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号