首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
海洋学   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Rapid industrial growth and increasing population has resulted in the discharge of wastes into the ocean, wastes which ultimately reach the seabed and contaminate the marine sediments. The soil-contaminants interaction, and their associated physico chemical properties with sediments control the behavior of marine clays. Marine clay deposits of low strength and high compressibility are located in many coastal and offshore areas. There are several foundation problems encountered in these weak marine clays. In this study, experimental work was carried out in the laboratory to stabilize soft marine clays using the lime column technique. Also the lime-induced effects on the physical and engineering behavior of marine clays in sulfate-contaminated marine environment was investigated. Consolidation tests indicate that compressibility of the lime-treated samples was reduced to 1/2-1/3 of the virgin soil after 45 days treatment. The test results also suggest that the lime column technique can be conveniently used to improve the behavior of contaminated marine clay deposits.  相似文献   
2.
 A Raman scattering and X-ray diffraction study of the thermal decomposition of a naturally occurring, ettringite-group crystal is presented. Raman spectra, recorded with increasing temperature, indicate that the thermal decomposition begins at ≈55 °C, accompanied by dehydration of water molecules from the mineral. This is in contrast to previous studies that reported higher temperature breakdown of ettringite. The dehydration is completed by 175 °C and this results in total collapse of the crystalline structure and the material becomes amorphous. The Raman scattering results are supported by X-ray diffraction results obtained at increasing temperatures. Received: 9 July 2001 / Accepted: 14 August 2002  相似文献   
3.
Ettringite related swelling in lime-stabilized sulphate bearing clay soil systems has only been reported within the last decade although similar expansive behaviour has been reported in concrete over many years. The use of ground granulated blastfurnace slag (GGBS), an industrial by-product, is well established as a binder in many cement applications where it provides enhanced durability and high resistance to sulphate attack. This paper reports on efforts to extend the use of GGBS to highway and other foundation layers by determining the beneficial effect of the suppression of swelling of lime-stabilized clay soils, particularly in the presence of gypsum. The paper describes the results of laboratory tests on lime-stabilized kaolinite containing different levels of added gypsum and on lime-stabilized gypsum (selenite) bearing Kimmeridge Clay to which, in both cases, the lime has progressively been substituted with GGBS. The tests determine the linear expansion behaviour of compacted cylinders, during moist curing in a humid environment at 30°C and during subsequent soaking in de-ionized water. The results illustrate that substitution of lime with GGBS produces significant reduction in linear expansion of lime-stabilized clay soils particularly those containing gypsum.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号