首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
海洋学   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
M.I. Holloway  F. Bussy 《Lithos》2008,102(3-4):616-639
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite–gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An32–36), diopside, biotite, oxides (magnetite, ilmenite), +/− amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting.

Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside – in the melanosome, leucosome and as epitaxial phenocryst rims – from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral–melt equilibria were reset to mineral–mineral equilibria.  相似文献   

2.
La Cueva del Llano is a volcanic tube of Pleistocene age on Fuerteventura Island, in the Canary Islands. Part of it is infilled with sediments of external origin. These deposits are exceptional in stratigraphic complexity and thickness compared with other known tube infillings, and they comprise nine stratigraphic units deposited in five phases. In Phase I, which has not been dated, sedimentation of cinder from a nearby cone occurred. Phase II began ca. 16,830 ± 900 14C yr B.P., whereas phase IV dates to 9280 ± 370 14C yr B.P. The interpretation of sedimentary features shows that phases III and V correspond to a dry climate, similar to the present one, whereas the climate was much wetter during phases II and IV. This paleoclimatic sequence agrees with those suggested by the study of deposits formed in other sedimentary environments, not only in Fuerteventura but on other islands of the Canary group and the Sud-Maroc region.  相似文献   
3.
Zircons from a nepheline-syenite of the Fuerteventura Basal Complex were dated by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The age obtained from a total of 21 U–Th–Pb analyses is 25.4 ± 0.3 Ma (2σ) indicating a late Oligocene–early Miocene crystallization. This age is consistent with new K–Ar ages on nepheline-syenites and pyroxenites, and contradicts previously published 39Ar–40Ar (feldspar) ages that were interpreted to represent a late Cretaceous–early Paleocene, pyroxenitic–syenitic magmatic episode. These new geochronological data are consistent with both field observations and most of the previously published ages on alkaline silicate rocks and associated carbonatites of Fuerteventura. Therefore, they strongly support the existence of a single, late Oligocene–early Miocene event of alkaline–carbonatitic magmatism in the Basal Complex of Fuerteventura, taking place at approximately 25 Ma and comprising: alkaline-pyroxenites, melteigites-ijolites, nepheline-syenites and carbonatites, as well as their volcanic equivalents and associated dykes.

These new data provide an estimate for the length of time that it took the island to grow, thus eliminating one of the major problems in explaining its development by a hot-spot model.  相似文献   

4.
Understanding late Holocene extinctions on islands requires accurate chronologies for all relevant events, including multiple colonisations by humans and the introduction of alien species. The most widely held hypothesis on the causes of Holocene island vertebrate extinctions incorporates human impacts, although climatic-related hypotheses cannot be excluded. Both hypotheses have been suggested to account for the extinction of the endemic Lava Mouse, Malpaisomys insularis from the Canary Islands. Here we present the first accelerator mass spectrometer (AMS) 14C ages from collagen of M. insularis bones from ancient owl pellets collected at Fuerteventura (Canary Islands, eastern Atlantic Ocean). These new dates contribute to an understanding of the extinction of this species. We are able to exclude climatic causes, predation by invasive species, and competition with the house mouse, Mus musculus. The arrival of Europeans in the Canary Islands correlates with the extinction of Malpaisomys. The introduction of rats, Rattus spp., together with their parasites and diseases, emerges as the most reasonable hypothesis explaining the extinction of M. insularis.  相似文献   
5.
The Canary and Cape-Verde archipelagos are two groups of volcanic islands often cited as case examples of the surface expression of two distinct hot-spot plumes. However, several considerations that␣we enumerate suggest a link between the two archipelagos. Using seismic profiles we describe a continuous morphological basement ridge that exists between the two archipelagos. We then examine the stratigraphic record available from field data on Fuerteventura Island (Canary) and Maio Island (Cape-Verde) and from a few Deep Sea Drilling Project (DSDP) holes. The geological history of these volcanic islands is very similar since the formation of their oceanic basement during the Late Jurassic. They share the same and synchronious sedimentary evolution (subsidence, uplift and emersion) as well as very similar timing of volcanism and deformation. The two distinct hot-spots model does not appear adapted to account for the formation of these structures as it ignores the existence of the ridge, as well as most of the geological coincidences. By describing the coinciding geological incidents, we argue that it is misleading to treat these two regions apart.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号