首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  国内免费   23篇
地球物理   5篇
地质学   62篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2022年   2篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   4篇
  1992年   1篇
  1989年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
杨莉  陈文  张斌  尹继元  孙敬博  李洁  喻顺  杨静  袁霞 《地质通报》2016,35(1):152-166
额尔宾山花岗岩岩体位于南天山晚古生代侵入岩带,对该花岗岩进行锆石U-Pb定年获得296.1±1.8Ma的年龄,为早二叠世。岩石主量元素分析结果表明,该花岗岩的Si O2含量为66.96%~67.3%,富碱(Na2O+K2O=7.53%~7.97%),K2O/Na2O1(1.15~1.27),属高钾钙碱性系列岩石;Al2O3为15.56%~15.62%,Al2O3K2O+Na2O+Ca O,属于过铝型。岩石稀土元素配分模式呈现轻稀土元素(LREE)富集((La/Yb)N=27.03~30.62)、重稀土元素(HREE)亏损((LREE/HREE)=18.2~20.1)、具有中等程度的负Eu异常(δEu=0.64~0.68)。微量元素判别结果显示,其具有I-A型花岗岩过渡的特征。结合区域地质背景综合分析,初步认定该岩体可能形成于南天山同碰撞向后碰撞构造体制转换时期,据此可以推测南天山洋盆闭合时限至少应该在早二叠世以前。  相似文献   
2.
The Tioueine pluton intrudes the Neoproterozoic series of the Iskel terrane, located in the Tuareg shield, western Hoggar. The consistency of the internal structures as well as the nature and organization of the associated microstructures demonstrate that the Tioueine pluton was emplaced syn-kinematically while N–S strike–slip shear zones were active. The syn-tectonic emplacement of the Tioueine massif implies that this pluton, although belatedly crystallized, entirely belongs to the concept of post-collisional magmatism. In order to date precisely the late Pan-African tectono-metamorphic event in the studied area, an U–Pb age of 523±1 Ma was obtained from abraded zircons of a late quartz–syenite from the Tioueine pluton. This early Cambrian age is younger than the other plutons of the Tuareg shield, which were mainly emplaced between 630 Ma and 580 Ma. This dating also shows that the Tuareg shield was not a single coherent block at 525 Ma, but rather an amalgam of active terranes moving each other along major shear zones. Finally, the Tioueine massif represents probably the final welding of the Tuareg shield assembly of terranes and consequently the end of the post-collisional orogenic episode in the whole Pan-African belt.  相似文献   
3.
对出露于阿尔泰造山带南缘可可托海地区二厂房岩体中的黑云母花岗闪长岩进行了LA-ICP-MS锆石U-Pb定年和岩石地球化学分析。结果显示,锆石的206Pb/238U年龄加权平均值为398.0±3.5 Ma(MSWD=1.3),表明该岩体形成于早中泥盆世。岩体的SiO2含量介于65.40%~69.31%之间,里特曼指数值为1.27~1.65,A/CNK值为0.92~1.02,属中钾、钙碱性、准铝质岩石。具有富集Cs、Rb、Th、U等大离子亲石元素和轻稀土元素,相对亏损重稀土元素和Nb、Ta、Zr、Hf等高场强元素,负Eu异常明显(δEu=0.48~0.65)的岛弧岩浆岩特征。结合区域地质资料,认为二厂房岩体形成于陆缘弧构造环境,是在古亚洲洋俯冲过程中,幔源的基性岩浆底侵下地壳后使之熔融并发生了岩浆混合作用的产物。  相似文献   
4.
汉南地区晋宁晚期铜-金成矿事件的确认及意义   总被引:1,自引:0,他引:1  
汉南地区位于扬子克拉通北缘西段。目前,在川、陕两省已在该区发现了数十个矿床(点)。其中,广泛分布的铜-金矿床(点)具有热液型矿化特征,成矿条件有利,具有寻找大-中型矿床的远景。为了查明这些铜-金矿产资源的形成时代,文章运用LA-ICP-MS锆石U-Pb法和单矿物~(40)Ar/~(39)Ar法对汉南地区有代表性的矿床(点)进行了成矿年代学研究。其结果显示,潘坝成矿期热液脉的锆石U-Pb年龄为(744±10)Ma,黑云母和钾长石~(40)Ar/~(39)Ar视年龄介于740 Ma~700 Ma之间。元山寺的成矿期白云母~(40)Ar/~(39)Ar坪年龄为(744±4)Ma,等时线年龄为(748±7)Ma。由于本次测试选择了成矿期矿物,其结果可以代表成矿时代。因此,汉南很可能存在晋宁晚期的铜-金成矿事件。根据区域地质演化历史,笔者认为汉南铜-金矿化(744 Ma)是造山晚期加厚岩石圈下部(山根)拆沉的结果。  相似文献   
5.
陕西省西乡县汉南杂岩望江山岩体辉长岩中含有丰富的锆石——从600kg辉长岩样品中分选出结晶良好、内部结构简单、成因和年龄单一、Hf同位素比值均一的锆石7g,锆石粒度多为0.2-0.3mm。分别在三个不同实验室利用三种方法对该锆石样品进行了U-Pb同位素年龄测定,获得了在误差范围内完全一致的年龄:819.8 ± 2.5 Ma(LA-ICP-MS)、821.7 ± 1.7 Ma(LA-MC-ICPMS)和822.1 ± 4.5 Ma(SHRIMP)。在国内4个权威实验室对该锆石进行了Lu-Hf同位素测定,获得了在误差范围内完全一致的176Hf/177Hf同位素比值——全部421个测试点加权平均值为0.282535 ± 0.000003(2σ)。采样点岩体规模巨大,露头良好,岩石新鲜,交通方便。该锆石样品满足作为Hf同位素测定标样的各方面的指标,可能是一个比较理想的Hf 同位素测定标样。Hf同位素测定标准物质的研制,是测定获得准确可靠的Hf同位素数据的基础,具有十分重要的实用价值和科学意义。  相似文献   
6.
The geological setting, petrography and bulk mineral chemistry of a monzodiorite and a presumably consanguineous megaporphyry with large (up to 25 cm) labradorite megacrysts, both intruding the upper Proterozoic Saramuj Conglomerate in south-west Jordan (south eastern shore of the Dead Sea), were examined. The crystallization temperatures of the monzodiorite and the megaporphyry as determined from pyroxene thermometry and supported by contact metamorphic mineralogy are about 700 and 900°C, respectively. The intrusion depth of the monzodiorite is about 3–4 km. The monzodiorite was emplaced in the Saramuj Conglomerate at about 595 + 2 Ma ago according to Rb/Sr and U/Pb age determinations.The stratigraphic positions of the monzodiorite, megaporphyry and their host rock (the Saramuj Conglomerate) were compared with time-equivalent lithologies in the Arabian-Nubian Shield. Correspondence to: H. Wachendorf  相似文献   
7.
ABSTRACT

The Eastern Pontides orogenic belt in NE Turkey hosts numerous I-type plutons of Eocene epoch. Here, we report new U–Pb SHRIMP zircon ages and in situ zircon Lu-Hf isotopes along with bulk-rock geochemical and Sr-Nd-Pb-O isotope data from the Kemerlikda??, Ayd?ntepe and Pelitli plutons and mafic microgranular enclaves (MMEs) to constrain their parental melt source(s) and evolutionary processes. U-Pb SHRIMP zircon dating yielded crystallization ages between 45 and 44 Ma for the studied plutons and their MMEs. The plutons range from gabbro to granite and have I-type, medium to high-K calc-alkaline, and metaluminous to slightly peraluminous characteristics. On the primitive mantle-normalized multi-trace-element variations, the plutons and their MMEs are characterized by signi?cant enrichment in LILE/HFSE. Chondrite-normalized REE patterns of the plutons and their MMEs are close to each other and show moderate enrichment with variable negative Eu anomalies. The studied plutons have fairly homogeneous isotope composition (87Sr/86Sr(i) = 0.70502 to 0.70560; εNd(i) = +0.9 to – 1.4; δ18O = +5.0 to +8.7‰, εHf(i) = – 2.2 to +13.5). The MMEs show medium to high-K calc-alkaline and metaluminous character. Although the isotope signatures of the MMEs (87Sr/86Sr(i) = 0.70508 to 0.70542; εNd(i) = +0.9 to ?1.1; δ18O = +5.8 to +8.0, εHf(i) = +4.3 to +10.4) are very similar to those of the host rocks. Fractionation of plagioclase, amphibole, pyroxene and Fe-Ti oxides played an important role in the evolution of the plutons. The isotopic composition of the studied plutons and MMEs are similar to I-type plutons derived from mantle sources. The MMEs show incomplete magma mixing/mingling, representing small bodies of mafic parental magma. The parental magma(s) of the studied plutons were generated from the enriched lithospheric mantle and then modified by fractional crystallisation, and lesser assimilation and mixing/mingling in the crustal magma chambers.  相似文献   
8.
涂怀奎 《化工矿产地质》2005,27(4):211-220,225
汉中地区主要发育宁陕与汉南2个大型岩体,各具不同的特征与矿产资源。晚元古代汉南 花岗岩杂岩体位于扬子地台北缘,其内部赋存金、钛等金属矿产。中生代宁陕花岗岩位于南秦岭地 槽区,多种非金属矿产在其两侧。相关矿产开发利用前景乐观,但要注意四点:①找金与找宝石开 发利用并重;②寻找非金属矿与伴生矿(元素)并行;③非金属矿产开发与工艺研究并重;④综合 利用与评价统一。  相似文献   
9.
The lengths and widths have been measured for 69 component bodies of composite plutons along the Cobequid Shear Zone. Plutons on major fault strands, those with mylonite zones >0.1 km wide, exhibit evidence of multiple intrusion of magma batches. Small plutons along short faults in stepover zones appear related to rapid emplacement of magma in bodies 1.5–4 km long by 0.1–2 km wide. Such small plutons show low enrichment in incompatible elements in older component bodies, but increasing amounts in younger bodies as a result of progressive magma expulsion from crystal mush during crystallization and shear-enhanced compaction in fault zones. Wider plutons generally occur along longer fault strands accommodating more strain and penetrating deeper into the crust and show enrichment in incompatible elements. The width of the mylonitic fault zone is about 15% of the width of these plutons. The length-to-width ratio of component bodies and composite plutons varies between 2 and 11. The best-fit line describing these data has a slope of 1.056, which implies scaling behavior between plutonism and tectonic processes. Scalar properties of plutonic bodies are similar to those of faults, but scalar relationships observed in component bodies do not apply to composite plutons.  相似文献   
10.
Abstract: The Alpine Orogen contains in South East Europe, from the Carpathians to the Balkans–Srednogorie, an Upper Cretaceous, ore bearing igneous belt: a narrow elongated body which runs discontinously from the Apuseni Mountains in the North, to the western part of the South Carpathians (Banat) in Romania, and further South to the Carpathians of East Serbia and still further East to Srednogorie (Bulgaria). This results in a belt of 750 km/30–70 km, bending from N-S in Romania and Serbia, to E-W in Bulgaria. Using the well established century-old terminology of this region, we describe it in this paper as the Banatitic Magmatic and Metallogenetic Belt (BMMB). Plate tectonics models of the Alpine evolution of South East Europe involve Mesozoic rifting, spreading and thinning of the continental crust or formation of oceanic crust in the Tethian trench system, followed by Cretaceous-Tertiary convergence of Africa with Europe and opening of Eastern Mediterranean and Black Sea troughs. The result of successive stages in the collision process is not only the continental growth of Europe from N to S by the docking of several microplates formerly separated from it by Mesozoic palaeo–oceans, but also the rise of mountain belts by overthickening of the crust, followed by orogenic collapse, lateral extrusion, exhumation of metamorphic core complexes and post-collisional magmatism connected to strike-slip or normal faulting. The BMMB of the Carpathian-Balkan fold belt is rich in ore deposits related to plutons and/or volcano-plutonic complexes. Serbian authors have proposed an Upper Cretaceous Paleorift in Eastern Serbia for the Timok zone and some Bulgarian geologists have furnished geologic, petrological and metallogenetic support for this extensional model along the entire BMMB. The existence and importance of previous westwards directed subductions of Transilvanides (=South Apuseni = Mure? Zone) and Severin-Krajina palaeo–oceans, popular in Roman ian literature, seems to have little relevance to BMMB generation, but the well documented northwards directed subduction of the Vardar-Axios palaeo–ocean during Jurassic and Lower Cretaceous is a good pre-condition for the generation, during the Upper Cretaceous, of banatitic magmas in extensional regime, by mantle delamination due to slab break–off. Four magmatic trends are found: a tholeiitic trend, a calc-alkaline trend, a calc-alkaline high–K to shoshonitic trend and, restricted to East Srednogorie, a peralkaline trend. For acid intrusives, the typology is clearly I-type and magnetite–series, pointing to sources in the deep crust or the mantle; however, some high 87Sr/86Sr ratios recorded in banatites prove important contamination from the upper crust. The calc-alkaline hydrated magmas, most common for banatitic plutons, can be considered as recording three stages of evolution: more primitive – the monzodioritic, dioritic to granodioritic trend (S Apuseni, S Ba–nat, Timok, C and W Srednogorie); more evolved – the granodioritic-granitic trend (N Apuseni, N Banat, Ridanj–Krepoljin); the alkaline trend (E and W Srednogorie, western part of N Banat). Correlating the composition of the host plutons with the types of mineralisation, several environments can be found in the BMMB, function of timing of fluid separation (porphyry versus non-porphyry environments), depth of emplacement, size of intrusion and geology of intruded rock pile, biotite versus hornblende crystallisation, involving the evolution of K/Na ratio in fluids, i. e. development of potassic and phyllic alteration zones: a) non-porphyry environment with granodioritic to granitic magmas, plutonic level, skarn mineralisation prevails; b) porphyry environment with monzodioritic or dioritic to granodioritic magmas, subvolcanic–hypabyssal–plutonic level; porphyry Cu with skarn halo at hypabyssal-subvolcanic level; c) porphyry environment with monzodioritic or dioritic to granodioritic magmas, volcano-plutonic complexes with porphyry copper plus massive sulfide mineralisation at subvolcanic-volcanic level; d) non-porphyry environment with magmas of alkaline tendency, volcanic level, vein (“mesothermal” and “epithermal”) mineralisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号