首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
地质学   1篇
自然地理   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
柯鲁克湖水化学特征分析   总被引:3,自引:1,他引:2  
柯鲁克湖目前是柴达木盆地内唯一的淡水湖。2012年10月采集了柯鲁克湖不同方向的表层湖水,分析了其总溶解固体(TDS)、pH、硬度及化学成分,与入湖河流性质进行对比,探讨了湖水的物质来源及影响因素。柯鲁克湖湖水整体呈弱碱性,属于硬度较高的淡水,湖水类型为Cl-·SO42--Na+·Ca2+型或以O.A.阿列金分类为Cl NaⅢ型水。pH值的整体变化较小,TDS及硬度在东西采样方向上变化显著。因降雨量小,湖水成分主要来源于地表河流及地下水输入的岩石风化产物。巴音河为主要入湖河流,河水性质不同于柯鲁克湖,属于HCO3--Ca2+型,造成两者差异的原因在于湖水发生强烈的蒸发-浓缩,湖水中的Ca2+和HCO3-以碳酸盐矿物的形式析出。  相似文献   
2.
Shale gas is a resource of emerging importance in the energy field. Many countries in the world have been making big financial investments in this area. Carboniferous shale in the eastern Qaidam Basin shows good exploration prospects, but limited research and exploration work for shale oil and gas resources has been undertaken. Geochemical analyses were performed on shale derived from the Upper Carboniferous Hurleg Formation in the eastern Qaidam Basin, Qinghai Province, and secondary electron imaging capability of a Field Emission scanning electron microscope(FE-SEM) was used to characterize the microstructure of the shale. The reservoir and exploitation potential of the studied shale was assessed by comparison with research results obtained from the Barnett Formation shale in Fort Worth Basin, North America and the Basin shale of Sichuan province. The results indicate that the eastern Qaidam Basin Carboniferous shale is high-quality source rock. There are four major microstructural types in the study area: matrix intergranular pores, dissolution pores, intergranular pores, and micro-fractures. The size of the micropores varies from 6–633 nm, the majority of which is between 39–200 nm, with a relatively small number of micro-scale pores ranging from 0.13–1 μm. The pore characteristics of the studied shales are similar to the North American and Sichuanese shales, indicating that they have good reservoir potential. No micropores are present in the organic matter, which is induced by its composition; instead we found an important lamellar structure in the organic matter. These micropores and microfractures are abundant, and are connected to natural visible cracks that form the network pore system, which controls the storage and migration of shale gas. This connectivity is favorable for shale gas exploitation, providing great scientific potential and practical value.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号