首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   14篇
  国内免费   3篇
测绘学   7篇
大气科学   17篇
地球物理   46篇
地质学   47篇
综合类   5篇
自然地理   27篇
  2023年   1篇
  2022年   6篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   13篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   12篇
  2008年   15篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1993年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有149条查询结果,搜索用时 996 毫秒
1.
Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca–HCO3 and Ca–SO4 are the dominant hydrochemical facies in the study area.  相似文献   
2.
The Krishni–Yamuna interstream area is a micro-watershed in the Central Ganga Plain and a highly fertile track of Western Uttar Pradesh. The Sugarcane and wheat are the major crops of the area. Aquifers of Quaternary age form the major source of Irrigation and municipal water supplies. A detailed hydrogeological investigation was carried out in the study area with an objective to assess aquifer framework, groundwater quality and its resource potential. The hydrogeological cross section reveals occurrence of alternate layers of clay and sand. Aquifer broadly behaves as a single bodied aquifer down to the depth of 100 m bgl (metre below ground level) as the clay layers laterally pinch out. The depth to water in the area varies between 5 and 16.5 m bgl. The general groundwater flow direction is from NE to SW with few local variations. An attempt has been made to evaluate groundwater resources of the area. The water budget method focuses on the various components contributing to groundwater flow and groundwater storage changes. Changes in ground water storage can be attributed to rainfall recharge, irrigation return flow and ground water inflow to the basin minus baseflow (ground water discharge to streams or springs), evapotranspiration from ground water, pumping and ground water outflow from the basin. The recharge is obtained in the study area using Water table fluctuation and Tritium methods. The results of water balance study show that the total recharge in to the interstream region is of the order of 185.25 million m3 and discharge from the study area is of the order of 203.24 million m3, leaving a deficit balance of −17.99 million m3. Therefore, the present status of groundwater development in the present study area has acquired the declining trend. Thus, the hydrogeological analysis and water balance studies shows that the groundwater development has attained a critical state in the region.  相似文献   
3.
Acid water from the Banyuputih river (pH  3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen crater lake into the river. This unique irrigation setting allows the study of soil acidification in situ. This paper assesses the effects of volcanogenically contaminated irrigation water on the chemical properties of the agricultural soils.The changes in soil properties were evaluated by comparing samples taken from the topsoil and sub-soil (1–3 m depth) from areas irrigated with acid water and areas irrigated with neutral water. The field survey thus resulted in four soil categories. Bulk soil composition, organic matter content, moisture content and particle size distribution were determined. Reactive phases were quantified with the selective extractions 1 M KCl, 0.1 M Na-pyrophosphate and 0.2 M acid ammonium oxalate (AAO).By comparing the four soil categories it is shown that the use of the naturally polluted irrigation water has had a large influence on the chemical composition of the topsoil. The composition of the soil solution has changed over the entire investigated soil profile. Furthermore the acid irrigation water has strongly modified the composition of the reactive phases, extracted as KCl, pyrophosphate, and AAO extractable elements, and also the bulk soil composition has been significantly modified. Overall this has resulted in the net dissolution of some elements and the net precipitation of others. The changes in the reactive phases and bulk soil composition are only apparent in the topsoil (0–20 cm) but not in the deeper soil.  相似文献   
4.
In waterlogged soils, dynamics of water influence the redox conditions and thus the mobility of elements. Irrigation of rice in Camargue (South eastern France) induces yearly dynamics of water. In order to determine the impact of irrigation on the geochemical properties of ground waters, a continuously in situ record of physico-chemical parameters (pH, Eh, temperature and electric conductivity) is performed during 1 year in an irrigated rice field. Seasonal dynamics show large Eh and pH variations. An annual irrigation cycle generates fast precipitations of Ca–Mg carbonates and Fe oxides between 50 and 110 cm depth when the soil is waterlogged. The dissolution of these minerals is initiated during a year without irrigation.  相似文献   
5.
The growing of tobacco was one of the most tightly regulated industries in Australia, until deregulation in 1995. Commonwealth regulations controlled the area cultivated with tobacco, the number of growers (i.e. quota holders) and marketing arrangements for tobacco leaf. This paper begins by outlining the nature and historical development of controls in the tobacco-growing industry, and discusses how the Commonwealth government removed the industry's regulatory and protective framework in 1995. The third part of the paper examines how deregulation has impacted upon the Mareeba-Dimbulah Irrigation Area, Far North Queensland, where small farmers produced 60 per cent of Australia's tobacco in 1995. The discussion will show that the agricultural landscape once dominated by tobacco has been transformed, as local farmers abandoned growing tobacco in favour of sugar cane, avocadoes, mangoes, macadamia nuts and other small vegetable crops (e.g. navy beans, pumpkins). Tobacco, once promoted by the Queensland government as a crop to facilitate closer settlement in the Mareeba-Dimbulah Irrigation Area, will have almost vanished from the landscape by 2002.  相似文献   
6.
节水灌溉理论与技术发展现状   总被引:3,自引:0,他引:3  
阎星 《地下水》2003,25(3):156-159
水资源日益短缺是全球性的问题。农业节水潜力较大,从长远战略角度看,发展节水灌溉对缓解我国水资源的供需矛盾意义重大,本文通过节水灌溉理论研究进展情况的介绍,提出了西北地区发展节水灌溉应注意的问题。  相似文献   
7.
Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that:(1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO_4~(2-) and Cl~-, while cations were mainly Na~+ and Ca~(2+);(2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland cropland forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March June September;(3) the spherical model was the most suitable variogram model to describe the salinity of the 0–3 cm and 3–20 cm soil layers in March and June, and the 3–20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0–3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and(4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.  相似文献   
8.
This study was conducted to investigate technical and socio-political attributes that lead to the underperformance of two selected irrigation schemes (Shina and Bebeks) in the Lake Tana floodplains, Ethiopia. Irrigation application efficiency (AE) at nine experimental fields showed a wide range, from 20 to 80%, but was mostly between 40 and 60%. Irrigation water-use efficiency (IWUE) varied from 1.9 to 7.2 kg m?3 for onion and 0.9 to 1.2 kg m?3 for maize. The lined and earthen canal conveyance losses in Bebeks were 0.037 and 0.047 l s?1 m?1, whereas in Shina they were 0.033 and 0.044 l s?1 m?1, respectively. The overall consumed ratio (OCR) of water was 0.58 for Bebeks and varied from 0.73 to 1.2 in Shina. Both schemes are performing below the standard based on technical performance indicators. Irrigation water user associations (WUAs) were not implemented, but irrigation committees (ICs), composed of local political leaders, are managing both schemes. Canal and reservoir sedimentation from erosion of upstream catchment areas during the rainy season was the major problem.  相似文献   
9.
Remote sensing techniques allow monitoring the Earth surface and acquiring worthwhile information that can be used efficiently in agro-hydrological systems. Satellite images associated to computational models represent reliable resources to estimate actual evapotranspiration fluxes, ETa, based on surface energy balance. The knowledge of ETa and its spatial distribution is crucial for a broad range of applications at different scales, from fields to large irrigation districts. In single plots and/or in irrigation districts, linking water volumes delivered to the plots with the estimations of remote sensed ETa can have a great potential to develop new cost-effective indicators of irrigation performance, as well as to increase water use efficiency. With the aim to assess the irrigation system performance and the opportunities to save irrigation water resources at the “SAT Llano Verde” district in Albacete, Castilla-La Mancha (Spain), the Surface Energy Balance Algorithm for Land (SEBAL) was applied on cloud-free Landsat 5 Thematic Mapper (TM) images, processed by cubic convolution resampling method, for three irrigation seasons (May to September 2006, 2007 and 2008). The model allowed quantifying instantaneous, daily, monthly and seasonal ETa over the irrigation district. The comparison between monthly irrigation volumes distributed by each hydrant and the corresponding spatially averaged ETa, obtained by assuming an overall efficiency of irrigation network equal to 85%, allowed the assessment of the irrigation system performance for the area served by each hydrant, as well as for the whole irrigation district. It was observed that in all the investigated years, irrigation volumes applied monthly by farmers resulted generally higher than the corresponding evapotranspiration fluxes retrieved by SEBAL, with the exception of May, in which abundant rainfall occurred. When considering the entire irrigation seasons, it was demonstrated that a considerable amount of water could have been saved in the district, respectively equal to 26.2, 28.0 and 16.4% of the total water consumption evaluated in the three years.  相似文献   
10.
近些年来,生态系统的服务价值研究已成为生态学以及生态经济学领域中的一个热点问题。祁连山被称为伸进西北干旱区的一座湿岛,在我国“一带一路”建设中占有重要地位。景电灌区兴建以来从祁连山移出了大量农牧民。那么,景电灌区移民对祁连山植被恢复的生态价值如何呢?以景电灌区移民涉及到的祁连山东端景泰、古浪、天祝3县山区为研究区,用价值工程方法对从祁连山区向景电灌区移民退耕退牧还林还草的生态价值做了分析,并与模型因子当量法的计算结果进行了比较。结果表明:祁连山向景电灌区移民退耕退牧还林还草总的生态价值为37.458 1×108元。其中,退耕还林还草的生态价值为37.438 6×08元,退牧后草场植被盖度增加的生态价值为194.79×104元。计算结果为用COSTANZA和谢高地模型因子当量法计算得的祁连山向景电灌区移民退耕退牧还林还草总的生态服务价值40.054 0×08元的93.52%。两种方法计算结果祁连山向景电灌区移民退耕退牧还林还草总的生态价值为景电工程年总成本1.45×08元的25.8~27.6倍。两种计算结果一致表明,景电灌区生态移民对祁连山植被恢复的生态价值十分突出。由此也可以看出,COSTANZA和谢高地模型因子当量法适用于祁连山的生态服务价值分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号