首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
Nannorrhops ritchiana ( Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage of N. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism of N. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni in N. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   
2.
Nannorrhops ritchiana (Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage ofN. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism ofN. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni inN. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   
3.
Abstract: Geology and genesis of the sediment-hosted barite deposits in the Lasbela and Khuzdar districts of Balochistan, Pakistan have been studied and described. Hot solutions generated in rifting environments during the initial stage of separation of the continental crustal block related to the Gondwanaland fragmentation subsequently reposed in Jurassic rocks, most probably played an important role on barite formation.
Paragenetic relationships indicate that the period of barite mineralization was distinctly later than that of zinc-lead sulphide mineralization in the Lasbela and Khuzdar districts. The barite deposits occur on top and in peripheral to the zinc-lead sulphides. The earliest barite mineralization took place in the clastic rock sequence of the lower Spingwar Formation as cross cutting veins. Younger mineralization as stratabound-replacement type occurred within the platform limestones of Loralai Formation, just above the Spingwar Formation. The youngest mineralization as stratiform is hosted within black shales, mudstones and argillaceous limestones of Anjira Formation at the top of Loralai Formation. In the light of the evidences gathered from field and laboratory investigations a genetic model has been deduced.  相似文献   
4.
Abstract: The Gunga barite deposits occur in carbonate clastic marine sequence of Jurassic age. These rocks are widely spread in Khuzdar-Lasbela belt which host important stratabound barite and zinc-lead deposits of Pakistan. These rocks are intricately folded and extensively faulted. The Gunga are low temperature hydrothermal deposits occurring as a series of disconnected lenses a few meters thick. Two mineralized horizons are recognized: barite in the upper zone, sphalerite and galena in the lower zone. Four types of barite mineralization occurs in Gunga stratabound replacement associated with 1) fracture filling, 2) open space fillings in solution collapsed breccia, 3) replacement in fault, and 4) veinlets associated with all these three types. The wall rocks of the Gunga deposits have also been altered by silicification, leaching and ferruginization.
The sulfur isotope values of most of the Gunga barite samples range from 23.8 to 27.8 per mil with an average of 26.4 per mil, which is very close to the average of isotopic values of epigenetic carbonate hosted Late Paleozoic Missouri barite deposits. The Gunga like other barite and sulfide deposits of Khuzdar-Lasbela belt are Mississippi Valley type, stratabound and of replacement origin precipitated from connate brines expelled during the incipient rifting of India from Gondwana land in the Late Jurassic and Early Cretaceous periods. The low content of copper, lead and zinc in the Gunga barite deposits suggests that these deposits were not formed in proximity to an igneous source of the ore solution.
The Gunga deposits are epigenetic and stratabound as their mineralization is structure controlled. There is an evidence of transgressive nature of host rock and wall rock alteration which are absent in stratiform or bedded deposits.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号