首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   9篇
地质学   28篇
综合类   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1994年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
2.
Attenuation characteristics of landfill leachate were examined for two uncontrolled landfills in Korea. The two landfills containing municipal wastes without appropriate bottom liner and leachate treatment system have different landfill age, waste volume, and most importantly different hydrogeologic settings. One landfill (Cheonan landfill) is situated in an open flat area while the other (Wonju landfill) is located in a valley. Variations of various parameters including dissolved organic carbon (DOC), dissolved oxygen (DO), alkalinity, pH, electrical conductivity (EC), redox potential (ORP), ammonia (NH3), nitrate (NO3), sulfate (SO42−), and chloride (Cl) were examined along groundwater flow path. All these parameters were analyzed every month for a year. In the interior of the landfills, typical anaerobic conditions revealed by low DO and NO3 concentrations, negative ORP values, high NH3, alkalinity, and Cl concentrations were observed. Generally, higher levels of contaminants (DOC, NH3, and Cl) were detected in the dry season while they were greatly lowered in the wet season. Significantly, large decrease of Cl- concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are different and they were largely dependent on permeability of surface and subsurface layers. The intermediately permeable surface of the landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the ground waters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into down gradient area. In the Wonju landfill, there are three different permeability divisions, the landfill region, the sandy open field and the paddy field. Roles of the landfill and paddy regions are very similar to those at the Cheonan. The very permeable sandy field receiving a large amount of rainwater infiltration plays a key role in controlling redox condition of the down gradient area and contaminant migration. This paper reports details of the attenuation and redox conditions of the landfill leachates at the two uncontrolled landfills.  相似文献   
3.
Large quantities of leachate-contaminated lateritic soil results from dump yards in the southwest coast of India. These dump yards receive large quantities of municipal solid waste which includes chemical, industrial and biomedical wastes. Large areas of land are currently being used for this purpose. An extensive laboratory testing program was carried out to determine the compaction characteristics and hydraulic conductivity of clean and contaminated lateritic soil. Batch tests were used to study the immediate effect of leachate contamination on the properties of lateritic soil. Contaminated specimens were prepared by mixing the lateritic soil with leachate in the amount of 5%, 10% and 20% by weight to vary the degree of contamination. The results indicated a small reduction in maximum dry density and an increase in hydraulic conductivity due to leachate-contamination. The change induced by chemical reaction in the microstructure of the soil was studied by scanning electron microscope before and after contamination of soil with leachate. The structure of the leachate contaminated soil sample appeared to be aggregated in scanning electron microscope analysis. The aggregated structure increases the effective pore space and thus increases the hydraulic conductivity. Fifty percent increase in hydraulic conductivity was observed for specimens prepared at standard Proctor density and mixed with 20% leachate. Compaction characteristics did not change much with the presence of leachate up to 10%. With 20% leachate the maximum dry density decreased slightly indicating excess leachate in the soil. However the changes are not significant.  相似文献   
4.
Liner design for waste disposal sites   总被引:5,自引:0,他引:5  
 Since the beginning of the 1980s waste disposal has become a particularly sensitive issue. This has led to the development of new legislations in the European Community and internationally which resulted in an array of regulations concerning landfill liner design. This paper comments on different "engineered" containment methods with particular reference to landfill liner design. Suggestions based on the review of the different methodologies are given and a case study is presented. Received: 25 February 1997 · Accepted: 16 December 1997  相似文献   
5.
Expansive clays undergo swelling when subjected to water. This can cause damage, especially to light weight structures, water conveyance canals, lined reservoirs, highways, and airport runways unless appropriate measures are taken. In this study, granulated blast furnace slag (GBFS) and GBFS-cement (GBFSC) were utilized to overcome or to limit the expansion of an artificially prepared expansive soil sample (sample A). GBFS and GBFSC were added to sample A in proportions of 5–25% by weight. The effects of these stabilizers on grain size distribution, Atterberg limits, swelling percentage and rate of swell of soil samples were determined. GBFS and GBFSC were shown to successfully decreasing the total amount of swell while increasing the rate of swell.  相似文献   
6.
Inorganic industrial waste landfills have the potential to contaminate subsurface groundwater supplies through migration of leachates down to the water table and into groundwater aquifers, despite the use of compacted low permeability clay or polyethene liners. This paper aims the removal of Cu2+ and Zn2+ in the leachate from an industrial waste landfill using natural materials (natural zeolite, expanded vermiculite, pumice, illite, kaolinite, and bentonite) as a liner material. Cu2+ and Zn2+ concentrations for all treatments decreased during the process. Of all the different natural materials, natural zeolite, expanded vermiculite and pumice, with bentonite, were effective in removing Cu2+ and Zn2+ present in the leachate. However, the use of illite and kaolinite with bentonite as liner materials could be of disadvantage in Cu2+ and Zn2+ removal from leachate. The adsorption kinetic models were also tested for the validity. The second order kinetics with the high correlation coefficients best described adsorption kinetic data.  相似文献   
7.
 About 50 million tonnes/year of waste rock from coal-mining is generated in the limited area of the thickly populated Upper Silesian Coal Basin (USCB) in Poland. There are 380 coal-mining waste dumps, including 76 active dump sites covering over 2,000 ha. About 15-16 million tonnes/year of waste rock is being reused for civil engineering purposes in the same area. This brings about a problem of ground water deterioration by constituents leached from waste rock exposed to atmospheric conditions. The major factors determining the ground water contamination potential from waste rock are chloride salinity, sulfur content and acid generation potential. The concept behind the presented studies was to provide data for correct evaluation and prediction of contaminant release from the waste rock, based on the characterization of coal-mining waste properties, as well as on long-term laboratory, lysimetric and field studies. The results show that coal-mining waste dumps can be a long-term source of ground water contamination, lasting for decades and increasing with time. Ground water down-gradient from the disused 15–30-years-old part of the studied dump displays high and increasing acidification, high TDS, SO4, and the highest, still increasing concentrations of Mn, Fe and Zn. Cost-effective and efficient pollution control measures, similar to the presented design and construction elements of the dump site, can mitigate the negative environmental impacts. Received: 3 July 1997 · Accepted: 9 September 1998  相似文献   
8.
In Germany, wastewater legislation requires all municipal and industrial leachate to be subjected to toxicity tests. However, no phytotoxicity tests using higher plants are currently included among the standard tests. Freshwater microalgae have been used in most phytotoxicity tests and have often been considered as surrogates for higher plants. However, microalgae often do not show the same sensitivity as higher plants and have major disadvantages for the testing of unmodified environmental samples. In the following study, we evaluated the suitability of the giant duckweed Spirodela polyrhiza for assessing the toxicity of a municipal landfill leachate and two leachates of copper mining residue. Duckweed static toxicity tests were performed, and frond number was the endpoint used to calculate EC50 values. Symptoms of stress (chlorosis, necrosis, root destruction, and colony breakup) were also recorded. The landfill leachate was toxic with EC50;96h values ranging from 1.3 to 2.7% leachate (v/v). Toxicity of the copper slag leachate was largely determined by the elution method used. Leachate obtained using conventional German leaching methods (S4-eluate) was not toxic to duckweed, whereas EC50 values for the pHstat4-eluate ranged from 3.2 to 4.2% leachate (v/v). The results demonstrate the suitability of S. polyrhiza for the testing of unmodified wastewater samples and provide further evidence for the addition of a duckweed toxicity test to the standard tests conducted in Germany.  相似文献   
9.
Fertilizers and liming agents are generally used to achieve optimal economic yields. However, several negative effects of long‐term annual fertilization of nitrogen (N) in particular have been observed, such as reduced cation exchange capacity and decreased base saturation, which may stimulate accelerated leaching loss of other nutrients. Equilibrium‐tension lysimeters installed at a depth of 1.4 m were used to evaluate leaching of soil‐solution ionic constituents from a tallgrass prairie restoration and optimally and deficiently N‐fertilized, no‐tillage (NT) and chisel‐plowed (CP) maize (Zea mays L.) agroecosystems on Plano silt loam soil (fine‐silty, mixed, superactive, mesic Typic Argiudoll). This study was conducted in south‐central Wisconsin, USA during a 1‐year period of above‐normal precipitation between January 2000 and January 2001. The loss of soluble constituents added to agroecosystems to maintain adequate soil fertility and pH, such as N, phosphorus, potassium, calcium, and magnesium, was generally numerically smaller from the natural prairie 25 years after conversion from cultivated agriculture than from optimally and deficiently N‐fertilized, NT and CP maize agroecosystems, though the differences were not significant. Tillage and fertilizer N‐rate generally did not significantly affect drainage, ionic concentrations, or their leaching losses in the maize agroecosystems, though all parameters evaluated tended to be numerically smaller in the deficiently than optimally N‐fertilized maize agroecosystems. Nitrate‐N leaching losses were generally significantly positively correlated with leaching losses of K, Ca, Mg, and Na in the maize agroecosystems, but not for the prairie, indicating that nitrate‐N leaching plays a significant role in the concomitant loss of cations to maintain soil‐solution charge balance in N‐fertilized maize agroecosystems in a temperate environment.  相似文献   
10.
Sukinda chromite valley is one of the largest chromite deposits of the country and produces nearly 8% of chromite ore. It greatly contributes towards the economic development but at the same time deteriorates the natural environment. It is generally excavated by opencast mining method. In the Sukinda mining area, around 7.6 million tons of solid waste have been generated in the form of rejected minerals, overburden material/waste rock and sub-grade ore that may be resulting in environmental degradation, mainly causing lowering in the water table vis-à-vis deterioration in surface and ground water quality. The study conducted in and around one of the chromite mine of the valley reveals that the concentration of hexavalent chromium is found in the water samples of ground and surface water, mine effluents and seepage water. Hexavalent Chromium (Cr+6) have been found varying between 0.02 mg/l and 0.12 mg/l in mine effluents and 0.03–0.8 mg/l in shallow hand pumps and 0.05 and 1.22 mg/l in quarry seepage. The concentration of Cr+6 in Damsal nalah, the main surface water source in the area, is found varying between 0.03 mg/l and 0.14 mg/l and a increasing trend, which is in the downstream of mining activities, has been observed. Leachate study clearly shows that the soil lying in the vicinity of mine waste dump shows highest concentration of Cr+6. Contaminant migration in ground water depends upon various geohydrological conditions of the area. The study shows that aquifer resistivity varies between 15 Ωm to 150 Ωm and aquifer depth varies from 4 m to 26 m below ground level. The ground water flow and mass transport models were constructed with the help of geo-hydrological and geophysical informations using Visual Modflow software. Contaminant migration and path lines for 20 years have been predicted in two layers model of ground water. The study provided an insight into the likely migration of contaminant in ground water due to leaching from overburden dump of chromite ore and will be helpful in making strategic planning for limiting the contaminant migration in the ground water regime in and around the mining areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号