首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2008年   1篇
  2005年   2篇
  2004年   3篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Modelling contaminant transfer with biological/chemical/radioactive processes needs appropriate numerical methods able to reproduce sharp concentration fronts. In this work, we develop a new Eulerian–Lagrangian Localized Adjoint Method (ELLAM) for solving the reactive transport equation with non-constant coefficients. To avoid interpolation (leading to errors), we use a moving grid to define the solution and test functions. The method is used to simulate first the infiltration of solute into a column of unsaturated porous medium and second the multispecies transport. The developed ELLAM gives accurate results without non-physical oscillations or numerical diffusion, even when using large time steps. To cite this article: A. Younes, C. R. Geoscience 336 (2004).  相似文献   
2.
Tracer tests are carried out in a heterogeneous porous medium that has a 3D correlated random distribution of the permeabilities. The fitting of numerical models provides the values of equivalent permeability and macrodispersivity characterizing a 2D homogeneous horizontal medium. Different flow configurations are studied: uniform, radial and pump and treat (doublet). The fitted parameter sets are independent of the flow type, except for the doublet. They are greater than the values predicted by stochastic theories, due to the small number of correlation lengths explored by the tracer and the limited extension of the experimental set-up. To cite this article: C. Danquigny, P. Ackerer, C. R. Geoscience 337 (2005).  相似文献   
3.
Trapped-gas content in natural porous media, also called residual gas saturation (Sgr), corresponds to the imbibition end-point. To define the parameters controlling Sgr, two parameters were studied: the influence of rock characteristics (on 400 sandstone samples) and initial gas saturation (Sgi), on the basis of 60 experimental curves between Sgr and Sgi. Based on an extensive experimental database, this study establishes the dominant influence of microporosity on trapped gas saturation, and indirectly that of the contained clays. To cite this article: K. Suzanne, J. Billiotte, C. R. Geoscience 336 (2004).  相似文献   
4.
We study in this paper the transport and deposition of suspended particles in saturated porous media. Some chromatographic short-pulse tests were performed in a laboratory column with a tracer and two types of suspended particles. A mathematical model was used to determine the hydrodispersive parameters and deposition rates from the breakthrough curves. The results show that the fitted parameters obtained vary with the flow rate and the characteristics of the suspended particles. We also observe, at high flow rates, that particles have a migration velocity higher than that of the conservative tracer. To cite this article: A. Benamar et al., C. R. Geoscience 337 (2005).  相似文献   
5.
Pollution source characterization by the Partitioning Interwell Tracer Test method requires the assessment of the partitioning coefficient of the tracers with the pollutant. Experiments conducted on batch tests (static) and laboratory columns (dynamic) indicated a partitioning kinetics between the reactive tracer (4-methyl 2-pentanol) and the organic phase (trichlorethene); the partitioning coefficient decreases when the flow velocity through the porous medium increases. This partitioning kinetics has been confirmed by the interpretation of the tracer breakthrough curves with a first-order kinetic transfer model. To cite this article: M. Bohy et al., C. R. Geoscience 336 (2004).  相似文献   
6.
The objective of our study is to exploit ultrasonic Doppler velocimetry (UDV) to analyze the velocity field within a steady flow on a porous sedimentary bottom. Velocities are measured for several sedimentary beds, as well within the fluid vein as within the sediment. Our results highlight an exponential distribution of the velocities inside the sediment and a discontinuity of the velocity at the interface water–sediment, between the velocity in the free flow and the velocity within the sediment. These results highlight the need to base the analysis of sedimentary transport on the reality of the physical processes at the interface water–sediment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号