首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Quantifying preferential flow in soils: A review of different techniques   总被引:19,自引:0,他引:19  
Preferential flow (PF) in soil has both environmental and human health implications since it favours contaminant transport to groundwater without interaction with the chemically and biologically reactive upper layer of soil. PF is, however, difficult to measure and quantify. This paper reviews laboratory and field techniques, such as breakthrough curves, dye tracing, and scanning techniques, for evaluating PF in soil at different scales. Advanced technologies, such as scanning techniques, have increased our capability to quantify transport processes within the soil with minimal soil disturbance. Important issues with respect to quantifying PF concern large-scale studies, frozen soil conditions, tracing techniques for particles and gases, a lack of simple mathematical tools for interpreting field data, and the lack of a systematic approach for comparing PF data resulting from different measurement techniques. Also, more research is required to quantify the relative importance of the various PF processes that occur in soil rather than the integrated result of all PF processes in soils.  相似文献   
2.
Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号