首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   187篇
  国内免费   505篇
测绘学   4篇
大气科学   29篇
地球物理   238篇
地质学   1256篇
海洋学   41篇
天文学   8篇
综合类   25篇
自然地理   40篇
  2024年   6篇
  2023年   20篇
  2022年   23篇
  2021年   42篇
  2020年   58篇
  2019年   47篇
  2018年   46篇
  2017年   34篇
  2016年   35篇
  2015年   43篇
  2014年   46篇
  2013年   50篇
  2012年   64篇
  2011年   61篇
  2010年   33篇
  2009年   86篇
  2008年   103篇
  2007年   86篇
  2006年   85篇
  2005年   97篇
  2004年   75篇
  2003年   58篇
  2002年   48篇
  2001年   36篇
  2000年   40篇
  1999年   49篇
  1998年   32篇
  1997年   39篇
  1996年   28篇
  1995年   28篇
  1994年   22篇
  1993年   33篇
  1992年   18篇
  1991年   13篇
  1990年   12篇
  1989年   13篇
  1988年   14篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   4篇
排序方式: 共有1641条查询结果,搜索用时 62 毫秒
1.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
2.
Abstract Zircons have been studied from different layers of migmatites (from Arvika, western Sweden and Nelaug, southern Norway) and from a paragneiss (from Arvika) associated with one of the migmatites. The main purpose of the investigation is to establish whether or not information about zircons can help in the elucidation of the parentage and rock-forming processes of migmatites.
The elongation ratio of zircons from all layers is small and characteristic of sedimentary zircons. Further, the absence of characteristic colours and the growth trends of the zircons (indicated by the reduced major axes) observed in the various samples both support a sedimentary parentage for these rocks. The zircons of all layers exhibit secondary growth (overgrowth, outgrowth and multiple growth) due to metamorphism. Compared with the zircons from the paragneiss, those of the migmatite layers are more clouded and less rounded, some of them becoming opaque or even skeletal; this is especially true of the zircons from the leucosomes. These observations indicate an alteration of the original sedimentary zircons in the migmatite, especially in the leucosomes, in response to the migmatization process, previously interpreted as partial melting.  相似文献   
3.
1IntroductionAdakite has specially sense in the resuming structure background of rock formed,because of its distinctive geochemistry feature and implying partic-ular petrogenesis and ore genesis mechanism (De-fant and Drummond,1990),as a result,it arouses numerous researchers widely concern. After adakite conception was drawn by Chinese (Wang etal.,2000), it was widely concerned by domestic re-searchers (Wang etal.,2000,2001a,2001b;Xu etal.,2000;Pan etal.,2001;Qian,2001;Xu etal.,2001;X…  相似文献   
4.
M.I. Holloway  F. Bussy 《Lithos》2008,102(3-4):616-639
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite–gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An32–36), diopside, biotite, oxides (magnetite, ilmenite), +/− amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting.

Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside – in the melanosome, leucosome and as epitaxial phenocryst rims – from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral–melt equilibria were reset to mineral–mineral equilibria.  相似文献   

5.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
6.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

7.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   
8.
H2O-undersaturated melting experiments of synthesized basalt (SiO2 = 50.7 wt.%, MgO = 8.3 wt.%, Mg# = 60) were conducted at fO2 corresponding to NNO+1 and NNO−1 to clarify the effects of pressure (2–7 kbar) and H2O on fractional crystallization in island arcs. H2O content was ranged from nominally anhydrous to 4.4 wt.%. Differentiation trends, namely the liquid lines of descent, change sensitively according to pressure-H2O relations. Tholeiitic differentiation trends are reproduced with H2O ≤ ∼2 wt.% in primary magma. With such quantities of H2O, fractional crystallization is controlled by olivine + plagioclase at 2 kbar. Increasing the pressure from 2 to ≥4 kbar induces early crystallization of orthopyroxene instead of olivine and therefore SiO2 enrichment in the residual melts is suppressed. Increasing H2O (≥ ∼2 wt.% in primary magma) stabilizes clinopyroxene relative to orthopyroxene and/or magnetite. Although the phase relations and proportions strongly depend on fO2 and H2O content, differentiation trends are always calc-alkaline.  相似文献   
9.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   
10.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号