首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地质学   6篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
D. A. Carswell  R. N. Wilson  M. Zhai 《Lithos》2000,52(1-4):121-155
As is typical of ultra-high pressure (UHP) terrains, the regional extent of the UHP terrain in the Dabieshan of central China is highly speculative, since the volume of eclogites and paragneisses preserving unequivocal evidence of coesite and/or diamond stability is very small. By contrast, the common garnet (XMn=0.18–0.45)–phengite (Si=3.2–3.35)–zoned epidote (Ps38–97)–biotite–titanite–two feldspars–quartz assemblages in the more extensive orthogneisses have been previously thought to have formed under low PT conditions of ca. 400±50°C at 4 kbar. However, certain orthogneiss samples preserve garnets with XCa up to 0.50, rutile inclusions within titanite or epidote and relict phengite inclusions within epidote with Si contents p.f.u. of up to 3.49 — overlapping with the highest values (3.49–3.62) recorded for phengites in samples of undoubted UHP schists. These and other mineral composition features (such as A-site deficiencies in the highest Si phengites, Na in garnets linked to Y+Yb substitution and Al F Ti−1 O−1 substitution in titanites) are taken to be pointers towards the orthogneisses having experienced a similar metamorphic evolution to the associated UHP schists and eclogites. Re-evaluated garnet–phengite and garnet–biotite Fe/Mg exchange thermometry and calculated 5 rutile+3 grossular+2SiO2+H2O=5 titanite+2 zoisite equilibria indicate that the orthogneisses may indeed have followed a common subduction-related clockwise PT path with the UHP paragneisses and eclogites through conditions of Pmax at ca. 690°C–715°C and 36 kbar to Tmax at ca. 710°C–755°C and 18 kbar, prior to extensive re-crystallisation and re-equilibration of these ductile orthogneisses at ca. 400°C–450°C and 6 kbar. The consequential conclusion, that it is no longer necessary to resort to models of tectonic juxtapositioning to explain the spatial association of these Dabieshan orthogneisses with undoubted UHP lithologies, has far-reaching implications for the interpretation of controversial gneiss–eclogite relationships in other UHP metamorphic terrains.  相似文献   
2.
Zircon ages are reported for three Moldanubian amphibolite grade orthogneisses from the southern Bohemian Massif obtained by conventional U/Pb analyses. For two of these orthogneisses, conventional U/Pb data are supported by ion microprobe single zircon ages or single grain evaporation data. The amphibolite grade orthogneisses, occurring in three small tectonic lenses within the Varied Group close to the South Bohemian Main Thrust, are of tonalitic, granodioritic or quartz dioritic composition.Conventional bulk size fraction and ion microprobe analyses of nearly euhedral zircons from a metatonalite, erroneously interpreted as a metagreywacke in a previous study, yielded an upper Concordia intercept age of 2048 ± 12 Ma. The well preserved euhedral grain shapes of the zircons suggest crystallization from a magmatic phase, and the upper Concordia intercept age is now interpreted as reflecting a magmatic event at that time. The age of this rock is compatible with the conventional zircon data and the (207Pb/206Pb)* single grain evaporation result from two further orthogneisses providing intrusion ages of 2 060 ± 12, 2 104 ± 1 and 2 061 ± 6 Ma, respectively. For one sample a concordant U/Pb age for sphene of 355 ± 2 Ma defines the age of amphibolite facies metamorphism. The upper Concordia intercept ages of three orthogneisses constitute the first direct evidence for the presence of early Proterozoic crust under the supracrustal cover in the southern part of the Bohemian Massif. Correspondence to: J. I. Wendt  相似文献   
3.
大别造山带花岗岩类和正片麻岩的Rb/Sr分区   总被引:2,自引:0,他引:2  
金成伟  郑祥身 《岩石学报》2000,16(3):420-424
根据花岗岩类和片麻岩的Rb/Sr比值和其他岩相学和地球化学性质,大别造山带可以分为下列四个带:(1)北大别北带:是一个灰色片麻岩和基性、超基性岩带,其灰色片麻岩的Rb/Sr比值为0.01~0.09;(2)北大别南带:为中酸性岩浆活动和强裂混合岩化的区域,其片麻岩的Rb/Sr比值为0.11%~0.40,花岗岩类为0.3%~0.9;(3)南大别带:为一构造混杂带,超高压变质作用和岩浆活动和混合岩化均有  相似文献   
4.
One of the main tectonic boundaries of the Variscan Belt in the Iberian Peninsula is the Ossa-Morena/Central Iberian contact. This contact is marked by a highly deformed unit (Central Unit) which recorded an initial high-pressure/high-temperature metamorphic evolution. Rb-Sr whole-rock isotopic data from three gneissic bodies cropping out in the Central Unit yield two Late Proterozoic ages (690 ± 134 and 632 ± 103 Ma) and an early Palaeozoic age (495 ± 13 Ma), which we interpret as protolith ages. The two Late Proterozoic orthogneisses show initial 87Sr/86Sr ratios typical of mantle-derived materials or those with significant mantle participation (87Sr/86Sr > 0.709). These new radiometric data, together with ages previously published and the structural evolution of the Central Unit, lead to the conclusions that: (1) there are magmatic protoliths of Late Proterozoic and Early Palaeozoic ages; (2) the metamorphic evolution of this area, including the high-pressure event, belongs to the Variscan orogenic cycle; (3) the deformations observed affect the rocks of the entire Central Unit, accordingly they are post-Ordovician, i.e. Variscan; and (4) consequently, the Ossa-Morena/Central Iberian contact is interpreted here as a Variscan suture.  相似文献   
5.
The Spessart Crystalline Complex, north-west Bavaria contains two orthogneiss units of granitic to granodioritic composition, known as the Rotgneiss and Haibach gneiss, respectively, which are structurally conformable with associated metasediments. The igneous origin of the Rotgneiss is apparent from field and textural evidence, whereas strong deformation and recrystallization in the Haibach gneiss has obscured most primary textures. New geochemical data as well as zircon morphology prove the Haibach gneiss to be derived from a granitoid precursor, which was chemically similar to the Rotgneiss protolith, thus suggesting a genetic link between those two rock units. Both gneiss types have chemical compositions typical of anatectic two-mica leucogranites. They show characteristics of both I- and S-type granites. Rb-Sr whole rock data on the Haibach gneiss provide an isochron age of 407±14 Ma (IR = 0.7077±0.0007; MSWD 2.2), which is slightly younger than the published date for the Rotgneiss (439±15 Ma; IR=0.7048±0.0026; MSWD 4.9). Single zircon dating of six idiomorphic grains, using the evaporation method, yielded a mean 207Pb/206Pb age of 410±18 Ma for the Haibach gneiss and 418±18 Ma for the Rotgneiss. Both zircon ages are within analytical error of the Rb-Sr isochron dates and are interpreted to reflect the time of protolith emplacement in Silurian times. Three xenocrystic zircon grains from the Rotgneiss yielded 207Pb/206Pb ages of 2278±12, 2490±13 and 2734±10 Ma, respectively, suggesting that late Archaean to early Proterozoic crust was involved in the generation of the granite from which the Rotgneiss is derived. Although it is assumed that the granitic protoliths of the two gneisses were formed through anatexis of older continental crust, the relatively low 87Sr/86Sr initial ratios of both gneisses may also indicate the admixture of a mantle component. The Rotgneiss and the Haibach gneiss thus document granitic magmatism at an active continental margin during late Silurian times.  相似文献   
6.
Here we discuss the post-metamorphic metasomatism of high-grade orthogneisses by studying granite-looking, pink-coloured microcline-bearing rocks exposed around Ambagaspitiya, Sri Lanka. These rocks are medium- to coarse-grained, and are more or less homogeneous, and isotropic. Textural, and petrographic analyses clearly show that these special rocks are neither deformed nor metamorphosed, and that they are not any kind of intrusive rocks. The present study shows that these rocks have formed through K-metasomatism of once intensely deformed, and metamorphosed granodiorite, tonalite, monzodiorite, and quartz monzodiorite. The modal compositions of most of these metasomatic rocks of Ambagaspitiya are very similar to those of syenite, quartz syenite, monzonite, quartz monzonite, and quartz monzodiorite.All the original metamorphic rocks — namely granitic gneiss, metagranite, metagranodiorite, metatonalite, metamonzodiorite, metaquartz monzodiorite, metadiorite, basic dikes, and metapelites — had undergone at least five ductile deformations, D1 to D5, and had been metamorphosed under upper amphibolite to granulite facies conditions prior to the metasomatism. Almost all the parent metamorphic rocks had acquired a well-developed gneissic foliation (S2), and had suffered at least two intense folding events (F3, and F5) before the metasomatism occurred. All the metamorphic, and deformational fabrics of affected metamorphic rocks have been completely or partially obliterated by the metasomatism. This indicates that the metasomatic process post-dates all ductile deformations (D1 — D5), and the regional metamorphism. Of the parent metamorphic rocks, metagranodiorite, metatonalite, metamonzodiorite, and metaquartz monzodiorite have undergone intense metasomatism. It is shown that the metasomatism has nucleated along late-stage, post-D5 shear zones, which may form an interconnected network. Potassium-bearing metasomatic fluids, derived from a deep-seated K-rich source, may have migrated along these shear zones. The fluids which entered the shear zones have pervaded the orthogneisses through foliation planes, and along grain boundaries, and microcracks in minerals, transforming the host gneisses to metasomatic rocks. The main metasomatic transformation has taken place through the replacement of metamorphic plagioclase, and plagioclase-quartz by microcline, and through formation of myrmekite. Further studies are necessary to unravel the nature, composition, and the source of these late-stage K-rich fluids in the lower crust.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号