首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2013年   3篇
  2009年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 593 毫秒
1
1.
We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint.  相似文献   
2.
We use field and microstructural observations, coupled to previously published P-T-time histories, to track the rheological evolution of an intracontinental subduction complex exposed in the Betic Cordillera in the western Mediterranean region. The body of rock we focus on, known as the Nevado-Filabride Complex (NFC), was originally part of the upper crust of the Iberian margin. It was subducted into hot asthenospheric mantle, then exhumed back toward the surface in two stages: an early stage of fast exhumation along the top of the subducting slab in a subduction channel, and a late stage of slower exhumation resulting from capture by a low-angle detachment fault rooted at the brittle-ductile transition. Each stage of deformation in the NFC was punctuated by changes in the dominant deformation mechanism. Deformation during initial subduction of the complex was accommodated by pressure-solution creep in the presence of a fluid phase – the grain sizes, stress magnitudes, and estimated strain rates for this stage are most consistent with a thin-film model for pressure solution in which the diffusion length scale is controlled by the grain size. During the early stages of exhumation within the subduction channel, deformation transitioned from pressure solution to dislocation creep due to increases in temperature, which resulted in increases in both water fugacity and grain size, each of which favor the dislocation creep mechanism. Differential stress magnitudes for this stage were ∼10 MPa, and are consistent with simple models of buoyancy-driven channel flow. With continuing subduction-channel exhumation, deformation remained within the dislocation creep field because sequestration of free water into hydrous, retrogressive minerals suppressed the pressure-solution mechanism. Differential stresses progressively increased to ∼100 MPa near the mouth of the channel during cooling as the rocks moved into mid-crustal levels. During the final, core-complex stage of exhumation, deformation was progressively concentrated into a narrow zone of highly localized strain beneath a mid-crustal detachment fault. Localization was promoted by a transition from dislocation creep to dislocation-creep-accommodated grain boundary sliding at temperatures of ∼350–380 °C, grain sizes of ∼4 μm and differential stress magnitudes of ∼200 MPa. Peak differential stress magnitudes of ∼200 MPa recorded just below the brittle-ductile transition are consistent with Byerlee's law in the upper crust assuming a vertical maximum principal stress and near-hydrostatic pore fluid pressures. Overall, the distribution of stress with temperature, coupled to independent constraints on strain rate from field observations and geochronology, indicate that the naturally calibrated Hirth et al. (2001) flow law for wet quartzite accurately predicts the rheological behavior of mid-crustal rocks deforming by dislocation creep.  相似文献   
3.
A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure.Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10−12 and 10−14 s−1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.  相似文献   
4.
This paper presents a new approach to constrain paleoburial and subsequent uplift by folding in fold-thrust belts, combining differential stress estimates from mechanically-induced calcite twins with the assumption that stress in the upper crust is in frictional equilibrium. Calcite twin data were collected from pre-folding veins in late Cretaceous limestones from the Ionian zone in Albania in order to (1) determine Paleogene-Neogene stresses associated with the development of the major vein sets in the frontal anticlines of the Outer Albanides and (2) estimate paleoburial of the Cretaceous reservoir rocks during pre-folding flexural subsidence of the foreland. The first vein set (set I) trends N140 (± 20) and the second set (set II) is oriented N060 (± 20). Calcite twinning analysis from set I veins reveals a pre-folding N030° extension likely related to foreland flexure; a later pre-folding, NE-directed compression (LPS) is identified either from one or from both vein sets in the samples from the Saranda anticline; this NE compression is instead recorded by twinning in set II veins from the Kremenara anticline during late stage fold tightening. This NE compression well agrees with independent microtectonic data, regional transport direction and contemporary stress. The differential stress values related to this NE compression are combined with the hypothesis of crustal frictional stress equilibrium to derive first-order estimates of paleoburial of the Cretaceous limestones just before they were uplifted by folding. The ~ 4 km paleoburial of these limestones estimated in the Saranda anticline is consistent with independent paleoburial estimates from stratigraphy, maturity rank of organic matter, paleotemperature/paleogeothermal gradients from fluid inclusions and predictions of kinematic modelling of the Albanian foreland. Our results therefore place reliable constraints on the amount and rate of vertical uplift of these Cretaceous limestones and yield a promising methodology for better constraining paleoburial and therefore erosion and uplift in fold-thrust belts.  相似文献   
5.
Coarse-grained natural jadeitite samples from Myanmar were experimentally deformed in a Griggs-type solid-medium apparatus at strain rates of 2·10−5 and 5·10−6 s−1 and temperatures of 900 and 1000 °C. The microfabrics of the deformed samples are investigated by scanning electron microscopy (SEM) using the electron backscatter diffraction (EBSD) technique. The critical shear stress for twinning in the (100) [001] system is derived from the orientation distribution of jadeite crystals with and without mechanical twins. The results indicate a homogeneous stress field within the sample and a critical shear stress of 150±25 MPa, which compares well to that determined by Kollé and Blacic [J. Geophys. Res. 87 (1982) 4019] for mechanical twinning of other clinopyroxenes. With the critical shear stress known, mechanical twinning of jadeite can be used as a paleopiezometer for high stress tectonic environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号