首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   3篇
地球物理   2篇
地质学   13篇
综合类   1篇
自然地理   1篇
  2017年   2篇
  2016年   1篇
  2013年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有17条查询结果,搜索用时 518 毫秒
1.

The Neoproterozoic Heavitree Quartzite is widespread in the Amadeus Basin and has correlatives in all of the major central Australian intracratonic basins. The origin of the formation is enigmatic, not only because of its widespread sheet‐like distribution and uniformity of composition, but also because intense silicification makes facies studies difficult. Recently discovered exposures at the eastern end of the basin are relatively free of diagenetic quartz allowing a detailed study of sedimentary structures and an understanding of the depositional architecture of the formation. The formation, which consists largely of pale‐tan or white quartzose sandstone interbedded with rare laminated mudstone and conglomerate intervals, was deposited in at least four depositional sequences. The sheet‐like nature of the sandstone results from an abundant supply of sediments deposited in a high‐energy, open, shelf‐like environment on a regionally subsiding, low‐gradient ramp. Environmental settings switched both laterally and temporally between sand waves deposited by reversing tidal flow and higher velocity unidirectional currents involving dunes and plane beds. In the early stages of deposition, mud‐dominated, tidal‐flat environments alternated with higher energy, sand‐dominated, tidally influenced settings. However, in the later stages of deposition a major eustatic sea‐level fall moved base‐level basinwards, earlier sediments were reworked by streams to form a ravinement surface, gravel was carried well into the basin and fines largely disappeared from the environment. Gravel deposition was followed by a return to high‐energy, tidally influenced deposits involving large sand waves or dunes. Towards the top of the formation sand waves deposited by reversing tidal currents gradually decline and are eventually replaced by dunes deposited by unidirectional current flow. The transition to the shallow‐marine, anoxic rocks of the Bitter Springs Formation is gradational in response to increased accommodation in a ramp setting which lacked a clearly defined shelf break. The Heavitree Quartzite was probably deposited as a direct response to the events surrounding the assembly and breakup of Rodinia, in particular peneplanation during regional uplift in response to a rising mantle plume followed by broad regional subsidence as the plume decayed prior to the breakup of the supercontinent. The large supply of quartz sand resulted from peneplanation associated with the rising plume and the lack of soil‐stabilising vascular plants, an environmental setting with no modern analogue. The ultimate disposition of fines is not known but, given the environment of deposition, it is likely that they were removed during peneplanation and bypassed the sag basin completely.  相似文献   
2.
滇西哀牢山变质岩系锆石U-Pb定年及其地质意义   总被引:11,自引:7,他引:4  
哀牢山-红河构造带是滇西地区最著名的带状变质带之一,其主体由哀牢山深变质岩系(哀牢山岩群)组成,一直被认为是扬子陆块古元古代结晶基底.本文选取哀牢山深变质岩系内的花岗片麻岩(11 ALl7-1和11AL09-1)和石英岩(11AL08-1),以及邻区的花岗岩(11ALl2-1)进行LA-ICP-MS锆石U-Pb定年.结果显示,花岗片麻岩11 ALl7-1有岩浆和变质两类锆石,两者的206Pb/238U年龄加权平均值分别为700±6Ma(MSWD=1.4,n=14)和27.4±1.2Ma(MSWD=1.9,n=3),代表原岩形成时代和变质年龄.花岗片麻岩llAL09-1岩浆锆石206 pb/238U年龄为220±3Ma(MSWD=3.1,n=14),变质锆石年龄为31.2±2.3Ma(MSWD =6,n=5),分别代表原岩结晶时代和后期变质年龄.石英岩11AL08-1中所有锆石具有核-边结构,92颗锆石核部年龄集中分布在6组,分别为493~528Ma(n=42)、635 ~ 640Ma(n=2)、701~784Ma(n=44)、976 ~980Ma(n=2)、1839Ma(n=1)和2487Ma(n=1).92个核部分析点具有高的Th/U比值(>0.23),指示岩浆来源.最年轻一组的42个核部年龄加权平均值为509Ma,代表石英岩原岩的最大沉积时代.7颗锆石变质边年龄为26~ 75 Ma内,代表变质年龄.花岗岩11 ALl2-1锆石206pb/238U年龄加权平均值为750±4Ma(MSWD =0.6),代表岩石形成时代.这些年龄表明哀牢山变质岩系是一个原岩复杂的变质杂岩带,它的原始物质至少包含新元古代~ 700Ma岩浆岩、~509 Ma沉积地层及220 ~ 240Ma的岩浆岩和地层,而不是以往认为的古元古代结晶基底.现今所见的哀牢山岩群“古老”岩石面貌主要是由地质历史上的浅变质或未变质的地层和岩浆岩在新生代26~31Ma发生变质变形作用改造的结果.哀牢山变质带的源区物质特征和主要岩浆事件与扬子陆块西缘十分相似,具有亲扬子的构造属性.  相似文献   
3.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   
4.
Lenses of radioactive Quartz Pebble Conglomerates (QPC) and associated quartzites are exposed along western margin of Archean Bonai Granite in Singhbhum-Orissa Craton, eastern India intermittently spreading over a strike length of 8–10 km. QPCs are radioactive while quartzites are mostly non-radioactive in nature. The purpose of the research is to investigate and characterize the radioactive QPC and quartzites geochemically to decipher their paleo-weathering conditions, provenance characteristics and possible tectonic setting of deposition. Geochemical data suggest moderate to high chemical weathering conditions in the provenance areas of QPC and quartzites. Major, trace and REE data indicate predominantly felsic to partly mafic-ultramafic sources for the deposition of radioactive Quartz Pebble Conglomerates from the surrounding Archean terrain.Elevated values of Th, U, Pb, La, Ce, Y and low Sc with high critical trace elemental ratios of Th/Sc, La/Sc, Th/Cr and Zr/Sc in radioactive QPC indicate their derivation from felsic igneous source. Low concentration of Th and Sc in quartzites compared to QPC and their variable Th/Sc ratios indicate both felsic and mafic sources for quartzites, albeit their preferential felsic affiliation. Higher Cr/Th ratios in quartzites (18.4), moderate Cr/Th in QPC (5.42), low to moderate Y/Ni in QPC (0.36–12.4) and quartzite (0.29–1.88), along with Au ranging from 30 to 1527 ppb, Pt up to 188 ppb and 682 ppb in QPC and quartzites respectively point towards some contribution from mafic-ultramafic source as well. REE patterns and in particular negative Eu anomalies for both QPC and quartzites further support their derivation from felsic rocks and could possibly linked to some of the phases of Archean Singhbhum Granite and Bonai Granite. Granitic to pegmatitic source for QPC is also revealed by the presence of rounded to sub-rounded monazite, zircon and thorian-uraninite grains in their matrix. Study indicates that QPC and quartzites were deposited in a passive margin tectonic setting developed during Archean between a span of 3.3 and 3.16 Ga along the western margin of Bonai Granite when the reducing condition was prevalent as indicated by their low Th/U ratios (<4.0) and presence of detrital grains of uraninite and pyrite in QPC. Radioactive QPC from western margin of Archean Singhbhum-Orissa Craton bears broad resemblance with QPC from Witwatersrand basin of South Africa and Elliot Lake, Canada and thus appears to be ideal sites for exploring QPC hosted U (+Au-PGE) mineralization in the analogous areas.  相似文献   
5.
苏北云台群含蓝晶石岩石矿物组合特征及其地质意义   总被引:2,自引:0,他引:2  
徐安中 《江苏地质》1998,22(1):10-14
中上元古界云台群中的石英岩类、某些片岩类是含蓝晶石的层位。与蓝晶石共生的黄玉、天蓝石、磷钙铝石、叶腊石、金红石等矿物构成高压变质带里原岩为泥质、泥砂质的白片岩或类白片岩的一套矿物组合。它们将成为今后岩石学研究的新领域,同时也是今后寻找金刚石、刚玉、磷、镁等矿产的线索之一。  相似文献   
6.
A Paleoproterozoic lateritic paleosol overlain by ultra-mature/mature quartzite is reported for the first time from three localities in the Svecofennian province in southern Finland. These are important indicators for warm paleoclimate and continental paleoenvironment. Ultra-mature quartzites above the lateritic paleosols are overlain by matrix-supported conglomerates followed by mature quartzites. These latter rocks are related to incipient rifting followed by main rift stage starting with increasingly more immature meta-arkose.  相似文献   
7.
The Ediacara fossil assemblage occurs widely in the Flinders Ranges, South Australia, in a single, readily mappable stratigraphic interval—the Ediacara Member of the Rawnsley Quartzite, which is part of the Pound Subgroup of the Wilpena Group. The Member occurs low in the Rawnsley Quartzite and consists of siltstones, medium‐ to thick‐bedded sandstones, and heterolithic units of intercalated siltstone and sandstone. Features such as rhythmical bedding and flaser bedding, interference and flat‐topped ripples, winnowed coarse sand residues, abundant clay galls, and rare desiccation cracks suggest that the heterolithic siltstone/sandstone units represent intertidal deposits. The rich body‐fossil assemblage occurs chiefly in these deposits of probable intertidal origin, and for the most part appears to represent organisms stranded by the tide away from their normal habitat. Associated bioturbation structures include horizontal, penetrative (post‐depositional) burrows, but vertical dwelling burrows have not been found; the Pound Subgroup evidently pre‐dates their widespread appearance.

The Rawnsley Quartzite appears to have been deposited during cycles of marine transgression, with the Ediacara Member inferred to have accumulated in environments varying from shallow shelf to tidally influenced lagoons sheltered by barrier bars.  相似文献   
8.
Well-preserved siliciclastic domal stromatolites, up to 2 m wide and 1·5 m high, are found in a 10 to 15 m thick interval within the Late Ordovician Eureka Quartzite of Southern Nevada and Eastern California, USA. These stromatolites appear as either isolated features or patchy clusters that contain more than 70% by volume quartz grains; their association with planar, trough and herringbone cross-bedding suggests that they were formed in an upper shoreface environment with high hydraulic energy. In this environment, sand bars or dunes may have provided localized shelter for initial microbial mat colonization. Biostabilization and early lithification of microbial mats effectively prevented erosion during tidal flushing and storm surges, and the prevalence of translucent quartz sand grains permitted light penetration into the sediment, leading to thick microbial mat accretion and the formation of domal stromatolites. Decimetre-scale to metre-scale stromatolite domes may have served as localized shelter and nucleation sites for further microbial mat colonization, forming patchy stromatolite clusters. Enrichment of iron minerals, including pyrite and hematite, within dark internal laminae of the stromatolites indicates anaerobic mineralization of microbial mats. The occurrence of stromatolites in the Eureka Quartzite provides an example of microbial growth in highly stressed, siliciclastic sedimentary environments, in which microbial communities may have been able to create microenvironments promoting early cementation/lithification essential for the growth and preservation of siliciclastic stromatolites.  相似文献   
9.
We use field and microstructural observations, coupled to previously published P-T-time histories, to track the rheological evolution of an intracontinental subduction complex exposed in the Betic Cordillera in the western Mediterranean region. The body of rock we focus on, known as the Nevado-Filabride Complex (NFC), was originally part of the upper crust of the Iberian margin. It was subducted into hot asthenospheric mantle, then exhumed back toward the surface in two stages: an early stage of fast exhumation along the top of the subducting slab in a subduction channel, and a late stage of slower exhumation resulting from capture by a low-angle detachment fault rooted at the brittle-ductile transition. Each stage of deformation in the NFC was punctuated by changes in the dominant deformation mechanism. Deformation during initial subduction of the complex was accommodated by pressure-solution creep in the presence of a fluid phase – the grain sizes, stress magnitudes, and estimated strain rates for this stage are most consistent with a thin-film model for pressure solution in which the diffusion length scale is controlled by the grain size. During the early stages of exhumation within the subduction channel, deformation transitioned from pressure solution to dislocation creep due to increases in temperature, which resulted in increases in both water fugacity and grain size, each of which favor the dislocation creep mechanism. Differential stress magnitudes for this stage were ∼10 MPa, and are consistent with simple models of buoyancy-driven channel flow. With continuing subduction-channel exhumation, deformation remained within the dislocation creep field because sequestration of free water into hydrous, retrogressive minerals suppressed the pressure-solution mechanism. Differential stresses progressively increased to ∼100 MPa near the mouth of the channel during cooling as the rocks moved into mid-crustal levels. During the final, core-complex stage of exhumation, deformation was progressively concentrated into a narrow zone of highly localized strain beneath a mid-crustal detachment fault. Localization was promoted by a transition from dislocation creep to dislocation-creep-accommodated grain boundary sliding at temperatures of ∼350–380 °C, grain sizes of ∼4 μm and differential stress magnitudes of ∼200 MPa. Peak differential stress magnitudes of ∼200 MPa recorded just below the brittle-ductile transition are consistent with Byerlee's law in the upper crust assuming a vertical maximum principal stress and near-hydrostatic pore fluid pressures. Overall, the distribution of stress with temperature, coupled to independent constraints on strain rate from field observations and geochronology, indicate that the naturally calibrated Hirth et al. (2001) flow law for wet quartzite accurately predicts the rheological behavior of mid-crustal rocks deforming by dislocation creep.  相似文献   
10.
山东省日照石英岩矿中的铁矿物主要以黄铁矿和褐铁矿为主,根据该矿石的性质,采用浮选、浮选一磁选、磁选3种选别方法进行对比试验,最终确定单一磁选方法较为适宜。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号