首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
自然地理   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Peatland testate amoebae are sensitive indicators of local hydrology and have been used as proxies for surface moisture conditions in fossil studies. However, few regional calibration datasets exist in North America, and knowledge of testate amoeba ecology and distribution patterns are limited. The objectives of this study were to (1) investigate the relationship between testate amoebae, environment, and Sphagnum species in Michigan peatlands; (2) generate transfer functions from this dataset that can be applied to fossil data; and (3) describe vertical variation of testate amoebae inhabiting Sphagnum moss. Testate amoeba assemblages from 139 microsites within 11 peatlands in Michigan were compared to assess variability between and within peatlands. Most peatlands contained similar testate amoeba assemblages, although within individual peatlands the amount of assemblage variability is correlated to the amount of environmental heterogeneity. Of the measured environmental variables, depth to water table showed the strongest relationship with testate amoebae. Depth to water table can be reconstructed from fossil data with a mean error of ±7.5 cm, although predictive ability deteriorates in extremely dry environments (>30 cm water table depth). Vertical variation in testate amoeba assemblages was investigated at 89 Sphagnum-dominated microsites by directly comparing amoeba assemblages and the abundance and frequency of common taxa in upper and lower portions of the Sphagnum stem. Except for extremely dry microsites, considerable vertical variation in assemblage composition exists. Many agglutinate taxa are more abundant on lower portions of the Sphagnum stem, and taxa containing symbiotic zoochlorellae are more abundant on upper portions. Refinements in sampling procedures and analysis may improve the predictive ability of transfer functions.  相似文献   
2.
Peatland‐inhabiting testate amoebae are sensitive indicators of substrate‐moisture conditions and have increasingly been used in palaeohydrological studies. However, to improve accuracy of testate‐amoeba‐based hydrological inferences, baseline ecological data on rare taxa, a larger geographic network of calibration sites, and incorporation of long‐term estimates of water‐table depth are needed. Species–environment relationships at 369 sites from 31 peatlands in eastern North America were investigated. Long‐term estimates of water‐table depth were obtained using the method of polyvinyl (PVC) tape‐discolouration. Transfer functions were developed using a variety of models, and validated through jackknifing techniques and with an independent dataset where water‐table depths were directly measured throughout the growing season. Results indicate that mean annual water‐table depth can be inferred from testate amoeba assemblages with a mean error of 6 to 8 cm, although there is a slight systematic bias. All transfer function models performed similarly and produced similar reconstructions on a fossil sequence. In a preliminary effort towards development of a comprehensive North American calibration dataset, data from this study were combined with previous studies in Michigan and the Rocky Mountains (n = 650). This combined dataset had slightly larger mean errors of prediction (8–9 cm) but includes data for several rare taxa. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号