首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
地球物理   2篇
地质学   15篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2011年   3篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The physical properties of the hydrous phyllosilicate lizardite have been investigated by atomistic simulation using the GULP code based on transferable semi-empirical interatomic potentials. Lizardite behavior was first investigated during structure relaxation at room temperature. The Helmholtz free energy is minimum for an equilibrium structure that is in agreement with experiment. The bulk, shear, and Young modulii for lizardite were calculated along with the Poisson ratio. From the shear and bulk modulii, we also calculated translational and longitudinal acoustic wave velocities that are important quantities for tectonophysics models. As expected, lizardite is stiffer in the a direction parallel to the layers than in the c perpendicular direction; the variation of the unit cell parameters with pressure is in good agreement with experiment. The cohesive energy between two successive layers along c direction was calculated at 0.33 eV (i.e., 0.11 eV per OH bond) in good agreement with recent ab initio calculations. Upon pressure and temperature variations, we evidenced that structural changes are mainly pressure induced; pressure being accommodated by a decrease of the c parameter up to 10 GPa. We also found that the change of slope in the derivative of the c cell parameter with respect to pressure occurring around 2 GPa originates from the bending of the interlayer hydroxyl groups with respect to the layer normal direction.  相似文献   
2.
We present a structural analysis of serpentine-bearing faults and shear zones in the Koniambo Massif, one of the klippes of the Peridotite Nappe of New Caledonia. Three structural levels are recognized. The upper level is characterized by a dense network of fractures. Antigorite and polygonal serpentine form slickenfibers along fault planes with distinct kinematics. As a result, the upper level keeps the record of at least two deformation events, the first associated with the growth of antigorite (WNW-ESE extension), the second with the growth of polygonal serpentine (NW–SE compression). The lower level coincides with the ‘serpentine sole’ of the nappe, which consists of massive tectonic breccias overlying a layer of mylonitic serpentinites. The sole records pervasive tangential shear with top-to-SW kinematics and represents a décollement at the base of the nappe. The intermediate level is characterized by the presence of several meters-thick conjugate shear zones accommodating NE–SW shortening. Like the sole, these shear zones involve polygonal serpentine and magnesite as the main syn-kinematic mineral phases. The shear zones likely root into the basal décollement, either along its roof or, occasionally, around its base. Compared to top-to-SW shearing along the sole, the two deformation events recorded in the upper level are older.The three structural levels correlate well with previously recognized spatial variations in the degree of serpentinization. It is therefore tempting to consider that the intensity of serpentinization played a major role in the way deformation has been distributed across the Peridotite Nappe. However, even the least altered peridotites, in the upper level, contain so much serpentine that, according to theoretical and experimental work, they should be nearly as weak as pure serpentinite. Hence, no strong vertical gradient in strength due to variations in the degree of serpentinization is expected within the exposed part of the nappe. Our proposal is that strain localization along the serpentine sole results from the juxtaposition of the nappe, made of weak serpentinized peridotites, against the strong mafic rocks of its substratum. This interpretation is at odds with the intuitive view that would consider the nappe, made of peridotites, as stronger than its basement.  相似文献   
3.
波伏棱型羟基纤蛇纹石是波伏棱型纤蛇纹石矿物的新变种,本文报导它的吸收光谱、红外光谱、穆斯堡尔谱、电子顺磁共振谱和核磁共振谱。 研究表明,吸收光谱是Fe~(3 )和Fe~(2 )的晶场跃迁以及Fe~(2 )→Fe~(3 )的荷移跃迁引起的;红外光谱是OH和Si-O的伸缩振动、OH转动以及Mg-O和Si-O的弯曲振动引起的;穆斯堡尔谱是Fe~(2 )_(八面体)、Fe~(3 )_(八面体)和Fe~(3 )_(四面体)引起的;电子顺磁共振谱是Mn~(2 )_(八面体)、Fe~(3 )_(八面体)和Fe~(3 )_(四面体)引起的;核磁共振谱是管道水,镁八面体和硅氧四面体上的OH引起的;矿物加热到825℃时,结构开始破坏并出现镁橄榄石相。 此外,本文还解释了该蛇纹石颜色的本质,阐明了上述过渡金属离子和OH在该矿物中的结构环境。  相似文献   
4.
云南双沟变质橄榄岩中蛇纹石的稀土元素空间分布   总被引:2,自引:1,他引:2  
黄忠祥  张旗 《岩石学报》1995,11(1):16-27
本文探讨变质橄榄岩的LREE富集型及U型分布的REE球粒陨石模型,是橄榄石固有的还是后期蚀变形成的。并寻求复原蚀变前橄榄石的REE丰度及型式。我们用蛇纹石颗粒代表蚀变后的橄榄石,用分选法和化学分层剥离法对样品进行予处理。用中子活化分析(NAA)手段进行了测试。结果表明:分选法确定了LREE的主要赋存载体是蛇纹石。分层剥离最后内核的REE丰度及模型,可近似地作为原来(未蚀变前)橄榄石的REE丰度及模型。  相似文献   
5.
Natural processes and anthropogenic activities may result in the formation and/or introduction of perchlorate (ClO4) at elevated levels into the environment. Perchlorate in soil environments on Earth and potentially in Mars may modify the dynamics of metal release and their mobilization. Serpentine soils, known for their elevated metal concentrations, provide an opportunity to assess the extent that perchlorate may enhance metal release and availability in natural soil and regolith systems. Here, we assess the release rates and extractability of Ni, Mn, Co and Cr in processed Sri Lankan serpentine soils using a range of perchlorate concentrations (0.10–2.50 w/v ClO4) via kinetic and incubation experiments. Kinetic experiments revealed an increase of Ni, Mn, Co and Cr dissolution rates (1.33 × 10−11, 2.74 × 10−11, 3.05 × 10−12 and 5.35 × 10−13 mol m−2 s−1, respectively) with increasing perchlorate concentrations. Similarly, sequential and single extractions demonstrated that Ni, Mn, Co and Cr increased with increasing perchlorate concentrations compared to the control soil (i.e., considering all extractions: 1.3–6.2 (Ni), 1.2–126 (Mn), 1.4–34.6 (Co) and 1.2–6.4 (Cr) times greater than the control in all soils). Despite the oxidizing capability of perchlorate and the accelerated release of Cr, the dominant oxidation state of Cr in solution was Cr(III), potentially due to low pH (<2) and Cr(VI) instability. This implies that environmental remediation of perchlorate enriched sites must not only treat the direct hazard of perchlorate, but also the potential indirect hazard of related metal contamination.  相似文献   
6.
Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature (<350 °C) hydrothermal fluid in serpentinization of ultramafic rocks in the region is inferred from analysis of deepest absorption features of muscovites at 2.20 μm, spectral abundance of lizardite and absence of prenhite-pumpyllite facies mineral assemblages. Talc was found to be the most common alteration product of serpentines followed by dolomites. Intense alteration of serpentines to talc along the fracture zone is attributed to the circulation of carbon dioxide rich hydrothermal fluids along these conduits. Kaolinite and halloysite are primarily associated with granites and are the result of hydrothermal alteration of plagioclase feldspar in granites while muscovite and illites are generally associated with phyllites and quartzites . The study demonstrates the potential of imaging spectroscopy for mapping hydrothermal alteration mineral assemblages in ultramafic complex.  相似文献   
7.
The efficiency of serpentinite as an alternative alkalinity generating material for the passive treatment of acid mine drainage (AMD) was assessed in the laboratory. Three series of batch experiments were designed for the passive treatment of a low pH (1.6) AMD synthetic solution containing 2,500 ppm Fe2+, 6,600 ppm SO42–, 10.5 ppm Al, 15 ppm Ni, and traces of Cr, Mn and Cu. The influencing factors studied were: the effect of water/rock ratio, residence time, type of the alkalinity generating material (dolomite, magnesite, marble, serpentinite), and nature of the system (open vs. closed cells). The variations in solution chemistry observed in the open cells indicate that a lower water/rock ratio (0.33 ml/g) was the most efficient for metals removal. The optimal residence time in open cells was 24 h to reach the higher pH values. In the closed cells laboratory setup, synthetic AMD was placed in contact with the various alkaline materials for three different contact times (24, 48, 72 h). The optimal pH was reached after 48 h and did not change appreciably for longer contact time, and the best results for metal removals were obtained with marble and serpentinite. Single treatment efficiency was compared with a successive treatment approach. The most promising results were obtained with a five step treatment: (1) pre-treatment in a closed cell using serpentinite, (2) aeration and settling, (3) treatment in an open cell using marble, (4) final aeration and settling, and (5) filtration with a coarse silica sand. With this configuration, the final pH was 6.5 and pronounced metals depletion was achieved (100% for Al, 99.95% for Fe, 85.7% for Ni).  相似文献   
8.
The hydrochemical balance of the Yaou catchment in French Guiana was determined over a period of 1 year, combined with a detailed characterization of the primary minerals and their weathering products, in order to estimate ultramafic rock weathering rates in a rainforest environment. The time required to develop the main horizons of the laterite profile was obtained from estimations of the weathering rates and dissolution kinetics of some major parent minerals (chlorite, serpentine, biotite, calcite).

The specific transport of solute matter in the catchment is 205 kg/ha/a. The Cl and NO3 net outputs shows that the system is in dynamic equilibrium, notably with respect to the biomass reservoir. The output flux of Mg in solution is mainly supplied from the weathering of primary minerals, whereas that of Ca comes both from atmospheric contributions and from the dissolution of carbonates. The fluxes of K and, more particularly, Na derive essentially from the atmosphere. Knowing the weathering rate of primary minerals, the total CO2 consumption rate by silicate weathering is estimated at 1430 mol/ha/a.

The weathering rates of chlorite, serpentine and biotite range from 18 to 65 mol/ha/a, and those of talc and calcite are, respectively 51 and 153 mol/ha/a. Weathering rates normalized to mineral modal proportions give a decreasing order of stability resistance to weathering (calcitebiotitechlorite>serpentine>talc) that agrees with their vertical distribution in the weathering profile. The dissolution kinetics of chlorite, biotite and serpentine, expressed in relation to the Si release rate, were calculated using estimations of the mineral exchange surface by (a) optical microscope image processing of crystal outlines, and (b) BET specific surface measurements. The release rate of Si, computed for biotite, chlorite and serpentine, ranges around 10−13 and 10−14 mol/m2/s using microscope images on particle sizes. The estimated dissolution kinetics is two orders of magnitude lower when using the BET measured exchange surface, which is 100 times larger.

The saprolitization rate, calculated from the weathering rates of calcite, chlorite and biotite, is on average 7.5 m/Ma. The rate of latosol development, calculated from the weathering rate of serpentine at the saprolite–latosol interface, is estimated at 4.5 m/Ma. That means that the profile is chemically thickening at a rate of 3 m/Ma.  相似文献   

9.
The Río Guanajibo serpentinite body (RGSB) near Mayagüez, Puerto Rico, is part of an ophiolite mélange thrust in an oceanic convergent zone. The aim of this study was to characterize the extent and chronology of serpentinization within this peridotite mass. Mineralogy, microstructures, and veining episodes within the RGSB were characterized using optical microscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and structural analyses. This study identified, for the first time, all three serpentine polymorphs (i.e., antigorite, chrysotile, lizardite) in serpentinite samples collected from Puerto Rico. Lizardite, the initial serpentine mineral formed from widespread hydration of olivine, was found throughout serpentinite samples. Chrysotile was the most abundant polymorph observed in sheared serpentinite samples, consistent with conditions favoring low fluid to rock ratios, supersaturation and abundant porosity. Antigorite was observed as a replacement texture in serpentinites that were not exposed to greenschist facies metamorphic conditions, and were frequently found in veins with a shear component. The results indicate that metamorphic conditions do not exclusively dictate polymorph formation.The mineralogy and textures observed within the different vein generations reflect the formation conditions, and deformational mechanisms, that occurred during the serpentinization process; six veining episodes (V1 – V6) were identified and grouped into four stages of serpentinization. Stage one (V1 and V2 type veins) represents the earliest stages of serpentinization and was characterized by microscopic fracture networks that formed as a result of cracking during the initial hydration of olivine under low water/rock ratios. During stage two (V3 and V4 type veins), fibrous crack - seal veins formed to accommodate continued volume expansion, via incremental fracture openings, caused by continued hydration of olivine. The ascension of serpentinite into the upper lithosphere was inferred to occur during Stage three; V5 type veins are associated with this stage. Textures and vein morphologies, representing supersaturated conditions and a decrease in temperature, were observed. Stage 4 (V6 type veins) was characterized by shear deformation features, which formed as a result of thrusting associated with the emplacement of the RGSB or Late Eocene transpression and fault reactivation along the Caribbean plate boundary.  相似文献   
10.
Concentrations of the elements N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, Ni, Cr, Co, Mo, Cd and Pb were measured in serpentine and granite soils and in the fern Pteridium aquilinum sampled from the Ślęża Massif in Lower Silesia, Poland. The serpentine soils were typical for serpentine soils in general with deficiency of K and Ca and excess of Mg, Ni and Cr. The principal component analysis (PCA) ordination based on the matrix of concentrations of elements in plants growing on serpentine and granite soils enabled the identification of the parent material from which ferns in this study were collected. This method indicated that the ferns from granite soils were distinguished by higher concentrations of Mo and Pb, while those from serpentine soils were distinguished by higher concentrations of Mg, Ni, Cr and Co. These differences in bioaccumulation reflect the higher concentrations of total and plant-available forms of Mg, Ni, Cr, Co in serpentinite and the higher concentrations of total Mo and total and plant-available Pb in granites as reported in literature. The different parent material types in the Ślęża Massif on which the investigated soils were developed influence the concentration and type of elements accumulated in P. aquilinum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号