首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   116篇
  国内免费   113篇
测绘学   81篇
大气科学   81篇
地球物理   268篇
地质学   199篇
海洋学   285篇
天文学   42篇
综合类   33篇
自然地理   35篇
  2024年   2篇
  2022年   2篇
  2021年   7篇
  2020年   18篇
  2019年   18篇
  2018年   13篇
  2017年   31篇
  2016年   29篇
  2015年   19篇
  2014年   38篇
  2013年   57篇
  2012年   44篇
  2011年   39篇
  2010年   54篇
  2009年   66篇
  2008年   59篇
  2007年   67篇
  2006年   49篇
  2005年   37篇
  2004年   32篇
  2003年   51篇
  2002年   32篇
  2001年   23篇
  2000年   29篇
  1999年   25篇
  1998年   29篇
  1997年   18篇
  1996年   12篇
  1995年   16篇
  1994年   23篇
  1993年   20篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   13篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   2篇
  1973年   2篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
1.
Stokes漂流对海洋上混合层中的流场和温度场结构具有不可忽视的作用。本文基于WAVEWATCHⅢ海浪模式模拟的海浪要素计算得到Stokes漂流,将其引入SBPOM模式的动量方程中,从体积输运的角度研究Stokes漂流对全球海表面温度的影响。分析发现Stokes漂流与Stokes输运在全球呈现高纬度强于中低纬度的带状分布特征,且这种流动与输运对全球海表面温度具有降温作用,该降温作用的分布与全球Stokes输运强度相对应,高纬降温作用大于中低纬度,特别是南极绕极流海域平均降温明显大于其余海域,最大降温可达1.5℃,且全球月平均降温超过0.1℃。  相似文献   
2.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Summary. A first-order form of the Euler's equations for rays in an ellipsoidal model of the Earth is obtained. The conditions affecting the velocity law for a monotonic increase, with respect to the arc length, in the angular distance to the epicentre, and in the angle of incidence, are the same in the ellipsoidal and spherical models. It is therefore possible to trace rays and to compute travel times directly in an ellipsoidal earth as in the spherical model. Thus comparison with the rays of the same coordinates in a spherical earth provides an estimate of the various deviations of these rays due to the Earth's flattening, and the corresponding travel-time differences, for mantle P -waves and for shallow earthquakes. All these deviations are functions both of the latitude and of the epicentral distance. The difference in the distance to the Earth's centre at points with the same geocentric latitude on rays in the ellipsoidal and in the spherical model may reach several kilometres. Directly related to the deformation of the isovelocity surfaces, this difference is the only cause of significant perturbation in travel times. Other differences, such as that corresponding to the ray torsion, are of the first order in ellipticity, and may exceed 1 km. They induce only small differences in travel time, less than 0.01s. Thus, we show that the ellipticity correction obtained by Jeffreys (1935) and Bullen (1937) by a perturbational method can be recovered by a direct evaluation of the travel times in an ellipsoidal model of the Earth. Moreover, as stated by Dziewonski & Gilbert (1976), we verify the non-dependence of this correction on the choice of the velocity law.  相似文献   
6.
In this study, we investigate two internal wave generation methods in numerical modeling of time-dependent equations for water wave propagation, i.e., delta source function method and source term addition method, the latter of which has been called the line source method in literatures. We derive delta source functions for the Boussinesq-type equations and extended mild-slope equations. By applying the fractional step splitting method, we show that the delta source function method is equivalent to the source term addition method employing the energy velocity. This suggests that the energy velocity should be used rather than the phase velocity for the transport of incident wave energy in the source term addition method. Finally, the performance of the delta source function method is verified by accurately generating nonlinear cnoidal waves as well as linear waves for horizontally one-dimensional cases.  相似文献   
7.
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces.The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of hnear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into comidemtion in design and application of important offshore structures.  相似文献   
8.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   
9.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
10.
应用理论推导及数值计算方法,对Stokes随机波的谱特性进行了分析。首先将波面方程,海水质点水平速度用一阶波面分量的非线性组合表示,应用平稳随机高阶短的降阶计算法则,得到了波面方程及海水质点水平速度与一阶波面分量的自相关函数之间的关系,从而确定了Stokes随机波浪的波浪谱密度及海水质点水平速度和加速度谱密度,进而求得有关波浪要素的均方根值。文章还应有数值计算方法,分析了波浪基本参数对均方根值的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号