首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   5篇
地球物理   1篇
地质学   12篇
  2021年   3篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

The Neoproterozoic Kaijianqiao Formation is one of the most important pre-Sturtian rift successions in South China and there has long been a lack of reliable geochronological constraints for its minimum depositional age. In this study, new zircon U-Pb ages of volcaniclastic rocks from the topmost Kaijianqiao Formation are presented. The youngest SHRIMP and LA-ICP-MS zircon 206Pb/238U weighted mean ages of the tuff sample are 715.0 ± 9.8 and 718.8 ± 9.4 Ma, respectively. The youngest LA-ICP-MS zircon 206Pb/238U weighted mean age of the tuffaceous siltstone sample is 720.8 ± 7.4 Ma and represents the maximum depositional age of the topmost Kaijianqiao Formation. The results show that the minimum depositional age of the Kaijianqiao Formation in the western Yangtze Block should be ca. 715 Ma, consistent with other pre-Sturtian rift successions in South China, such as the Banxi Group, Chengjiang, and Liantuo formations. Together with the published zircon U-Pb ages, it is demonstrated that the Sturtian glaciation in South China (Jiangkou glaciation) most likely initiated around 715 Ma. In other Rodinia blocks, like Laurentia and Arabia, the Sturtian glaciation probably started between 712 and 717 Ma, thus our new results further support that the Sturtian glaciation was a rapid and globally synchronous event. Other 206Pb/238U zircon ages display five distinct peaks at ca. 751, 780, 799, 819, and 848 Ma, which corresponded to the tectonic-magmatic events related to the break-up of Rodinia.  相似文献   
2.
The Cryogenian succession of the Northern Flinders Ranges reveals a complex sedimentary record between the Sturtian and Marinoan glacial deposits. A major unconformity separates the Sturtian and Marinoan-aged sedimentary successions in the area. This forms a subaerial erosion surface with terrestrial and marginal marine infill directly above the Angepena and Balcanoona Formations in their respective localities. This exposure surface is here correlated with the previously documented submarine unconformity between the Yankaninna Formation and the underlying deep marine Tapley Hill Formation. This erosional event provides a chronostratigraphic marker horizon that coincides approximately with thepreviously defined Sturtian–Marinoan Time Series boundary in the Northern Flinders Ranges. These stratigraphic relationships also constrain lateral facies relationships between the Oodnaminta ReefComplex (Balcanoona Formation) and the Angepena Formation. Similarly, the shallow-water Weetootla Dolomite is correlated with the deeper water carbonates of the Yankaninna Formation.  相似文献   
3.
新元古代冰期及其年代   总被引:7,自引:0,他引:7  
新元古代在全球范围内出现了几期冰期事件,称之为“雪球地球”事件。这种剧烈的环境变化带来此后地球上生命演化的一次飞跃。“雪球地球”事件的核心是全球冰期的同时性,需要同位素地质年代学的证据。新元古代末期两次主要的冰期事件是Marinoan冰期和Sturtian冰期,其中Marinoan冰期结束于635Ma;Sturtian冰期可能发生在710~720Ma,已发表的年龄数据限定它在670Ma之前结束。Marinoan冰期后的Gaskiers冰期发生在580~590Ma。对华南的古城、铁丝坳、长安组、江口组等进行进一步精确定年,将对限定Sturtian冰期持续时间和Cryogenian、南华系的下限年龄具有重要意义。  相似文献   
4.
付勇  郭川 《地质论评》2021,67(3):67040031-67040031
南华盆地成冰系大塘坡组锰矿是我国最重要的锰矿产地之一,它形成于成冰纪Sturtian冰川事件之后,其成矿背景及形成机理一直是研究的重点。在系统总结Sturtian冰川事件起始与结束时间、南华裂谷盆地结构演化及古气候演变等重大地质事件的最新研究进展的基础上,综合分析了南华盆地大型沉积型锰矿成矿作用过程与这些重大地质事件之间的联系。揭示了南华盆地Sturtian冰期的启动和结束与全球其他地区基本一致,分别发生在~717 Ma和~660 Ma之前。同时,对南华系大塘坡锰矿成矿时代进行了约束,大约形成于~660 Ma之前。在新元古代中期Rodinia超大陆裂解作用的影响下,南华裂谷盆地内部发育一系列由同沉积断层控制的地垒—地堑次级盆地。沿同沉积断层运移的热液流体为大塘坡锰矿的形成提供了大量的成矿物质,并对大塘坡锰矿的发育具有明显的控制作用。化学蚀变指数(CIA)、锂同位素(δ7Li)及锇同位素组成(187Os/188Os)等风化指标显示,南华盆地Sturtian冰期晚期至间冰期大塘坡期早期的气候为寒冷干燥,随后转为温暖湿润并很快变为寒冷干燥。至大塘坡中晚期,气候逐渐由寒冷干燥恢复至温暖湿润,并一直保持至大塘坡晚期。整体来看,Sturtian冰期结束后,南华盆地表层海水逐渐氧化,深部沉积水体出现局部间歇式氧化环境,裂陷阶段热液和陆源输入的Mn2+被氧化为MnO2发生沉淀,并在底部伴随着有机质的埋藏及早期成岩作用而最终形成菱锰矿。  相似文献   
5.
Stratigraphic and sedimentological investigation of the interglacial succession within the Cryogenian-aged Umberatana Group of the Northern and Central Flinders Ranges reveals a complex array of sedimentary successions lying between the Sturtian and Marinoan glacial deposits. The Sturtian–Marinoan Series boundary was first defined from the Adelaide area at the uppermost contact of the Brighton Limestone. In the Northern Flinders Ranges the Sturtian–Marinoan Series boundary has been positioned at the uppermost contact of the Balcanoona Formation, which is thought to correlate with the Brighton Limestone. In the Northern Flinders Ranges a major unconformity separates the Sturtian and Marinoan-aged sedimentary successions (Nepouie–Upalinna Subgroups). In moderately deep marine depositional settings, this submarine unconformity is located at the base of the Yankaninna Formation where erosion has deeply incised (up to 300 m) into the underlying Tapley Hill Formation. In shallower marine settings the unconformity is found at the base of the Weetootla Dolomite. In very deep water depositional settings this unconformity is not recognised, and the Yankaninna Formation appears to conformably overlie the Tapley Hill Formation suggesting that this erosional feature is restricted to shallow and moderately deep depositional settings. This unconformity presents a regionally persistent chronostratigraphic marker horizon, which reliably marks the Sturtian–Marinoan Series boundary at the base of the Yankaninna Formation from shallow shelfal to deep-water basinal settings throughout the Northern Flinders Ranges. In the Central Flinders Ranges the post-Sturtian glacial stratigraphy records a very similar depositional record to that observed in the Northern Flinders Ranges. In the Central regions the Tapley Hill Formation is overlain by deep-marine carbonates and calcareous shales of the Wockerawirra Dolomite and Sunderland Formations, respectively. The base of the Wockerawirra Dolomite is found to be in erosional contact with the underlying Tapley Hill Formation. This stratigraphic relationship, together with lithological similarities, indicates the Wockerawirra Dolomite and Sunderland Formation of the Central Flinders Ranges are lateral correlatives of the Yankaninna Formation of the Northern Flinders Ranges. The regional nature of the Sturtian–Marinoan unconformity in the Adelaide Geosyncline suggest the possible existence of a glacio-eustatic event that may correlate with glacials/glaciation elsewhere on the Earth during the Cryogenian.  相似文献   
6.
Could ‘Snowball Earth’ have left thick glaciomarine deposits?   总被引:3,自引:3,他引:0  
At least two of the Cryogenian (Neoproterozoic) glacials, viz. those of the Sturtian and the Marinoan, are said to have been so severe that the entire Earth was covered with ice (Snowball Earth). The most convincing evidence consists of diamicts with some glacial striae and of other glacial signatures (striated surfaces, polished rocks) that have been found in areas that are interpreted on the basis of paleomagnetic data as being positioned, at the time, at low latitudes. The extremely low temperatures must have contributed to entirely frozen oceans. Nevertheless, diamicts of exceptional thickness were formed in a marine environment. This cannot be explained satisfactorily, as icebergs cannot have floated in an entirely frozen ocean. It is suggested that at least a considerable part of the extremely thick Neoproterozoic ‘glaciomarine’ deposits represent syntectonic mass-flow deposits rather than glacial deposits. The existence of a huge mountain range between Eastern and Western Gondwanaland provided favourable conditions for such deposits.  相似文献   
7.
The Bolla Bollana Formation is an exceptionally thick (ca 1500 m), rift‐related sedimentary succession cropping out in the northern Flinders Ranges, South Australia, which was deposited during the Sturtian (mid Cryogenian) glaciation. Lithofacies analysis reveals three distinct facies associations which chart changing depositional styles on an ice‐sourced subaqueous fan system. The diamictite facies association is dominant, and comprises both massive and stratified varieties with a range of clast compositions and textures, arranged into thick beds (1 to 20 m), representing stacked, ice‐proximal glaciogenic debris‐flow deposits. A channel belt facies association, most commonly consisting of normally graded conglomerates and sandstones, displays scour and fill structure of ca 10 m width and 1 to 3 m depth: these strata are interpreted as channelized turbidites. Rare mud‐filled channels in this facies association bear glacially striated lonestones. Finally, a sheet heterolithics facies association contains a range of conglomerates through sandstones to silty shales arranged into clear, normally graded cycles from the lamina to bed scale. These record a variety of non‐channelized turbidites, probably occupying distal and/or inter‐channel locations on the subaqueous fan. Coarsening and thickening‐up cycles, capped by dolomicrites or mudstones, are indicative of lobe build out and abandonment, potentially as a result of ice lobe advance and stagnation. Dropstones, recognized by downwarped and punctured laminae beneath pebbles to boulders in shale, or in delicate climbing ripple cross‐laminated siltstones, are clearly indicative of ice rafting. The co‐occurrence of ice‐rafted debris and striated lonestones strongly supports a glaciogenic sediment source for the diamictites. Comparison to Pleistocene analogues enables an interpretation as a trough mouth fan, most probably deposited leeward of a palaeo‐ice stream. Beyond emphasizing the highly dynamic nature of Sturtian ice sheets, these interpretations testify to the oldest trough mouth fan recorded to date.  相似文献   
8.
9.
付勇  郭川 《地质论评》2021,67(4):67040973-67040991
南华盆地成冰系大塘坡组锰矿是我国最重要的锰矿产出层位之一,它形成于成冰纪Sturtian冰川事件之后,其成矿背景及形成机理一直是研究的重点。在系统总结Sturtian冰川事件起始与结束时间、南华裂谷盆地结构演化及古气候演变等重大地质事件的最新研究进展的基础上,综合分析了南华盆地大型沉积型锰矿成矿作用过程与这些重大地质事件之间的联系。揭示了南华盆地Sturtian冰期的启动和结束与全球其他地区基本一致,分别发生在~717 Ma和~660 Ma之前。同时,对南华系大塘坡锰矿成矿时代进行了约束,大约形成于~660 Ma之前。在新元古代中期Rodinia超大陆裂解作用的影响下,南华裂谷盆地内部发育一系列由同沉积断层控制的地垒—地堑次级盆地。沿同沉积断层运移的热液流体为大塘坡锰矿的形成提供了大量的成矿物质,并控制着大塘坡锰矿的发育分布。化学蚀变指数(CIA)、锂同位素(δ~7Li)及锇同位素组成[n(~(187)Os)/n(~(188)Os)]等风化指标显示,南华盆地Sturtian冰期晚期至间冰期大塘坡期早期的气候为寒冷干燥,随后转为温暖湿润并很快变为寒冷干燥。至大塘坡中晚期,气候逐渐由寒冷干燥恢复至温暖湿润,并一直保持至大塘坡晚期。整体来看,Sturtian冰期结束后,南华盆地表层海水逐渐氧化,深部沉积水体出现局部间歇式氧化环境,裂陷阶段热液和陆源输入的Mn~(2+)被氧化为MnO_2发生沉淀,并在底部伴随着有机质的埋藏及早期成岩作用而最终形成菱锰矿。  相似文献   
10.
In South China, the Wuqiangxi Formation of the Banxi Group and its equivalents underlie the early Cryogenian (Sturtian) glacial deposits but their thickness varies from <200 m to >2000 m. In the Guzhang section of western Hunan, the Wuqiangxi Formation is only 152 m thick, and an ash bed 58 m below the glacial diamictite yielded a SHRIMP U-Pb age of 809.3±8.4 Ma. In contrast, 90 km south of the Guzhang section towards the basin in Zhijiang area where the Wuqiangxi Formation is ~2200 m thick, an age of 725±10 Ma has been reported from the top of this unit, 300 m below the glacial diamictite. These ages provide new evidence for the regional stratigraphic correlation across the Nanhua basin, and suggest unusually large (>2 km) stratigraphic erosion potentially associated with the Sturtian glaciation in South China. The magnitude of erosion may imply significant uplifting and tectonotopography at the onset of the Sturtian glaciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号