首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. Yet, the particular mechanisms through which fluids and associated parameters influence the stress regime and thus the seismicity of a particular area are not well understood.We carry out a study of the spatio-temporal behavior of earthquakes, fluid-related parameters (groundwater levels) and meteorological observables (precipitation) in the swarm earthquake area of Bad Reichenhall, southeastern Germany. The small volume in which the earthquakes take place, almost yearly occurring earthquake swarms and a permanent, seismo-meteorological monitoring network, provide nearly controlled experimental conditions to study the physics of earthquake swarms and to infer characteristic properties of the seismogenic crust.In this paper we (1) describe this fairly unique study area in terms of geology, seismicity and atmospheric conditions; (2) present two cases of earthquake swarms that seem to follow above-average rainfall events; and (3) examine the observed migration of hypocenters with a simple pore pressure diffusion model.We find significant correlation of seismicity with rainfall and groundwater level increase, and estimate an average hydraulic diffusivity of D = 0.75 ± 0.35 m2/s for Mt. Hochstaufen in 2002.  相似文献   
2.
We have analysed three recent earthquake sequences in the northern part of the Taupo Volcanic Zone. A 1998 sequence at Haroharo with a largest event of ML 4.8, and a 2004 sequence near Lake Rotoehu (largest event ML 5.4), had normal b-values, and displayed an aftershock decay pattern, with most of the activity within the first few days. In contrast, a 2005 sequence a few tens of kilometres away at Matata (largest event ML 4.1), had very different characteristics, with a slow development and decay, no tendency for enhanced seismicity after the larger events, and a very high b-value.The focal mechanisms of the Rotoehu and Matata events are normal, and have stress patterns consistent with the geodetically observed extension of the Taupo Volcanic Zone in a northwest–southeast direction. The extensive recent volcanism in the Okataina Volcanic Centre does not seem to have affected the stress pattern in this area.The Rotoehu sequence showed a strong resemblance, particularly in the time distribution of events, to the well-known swarm activity in the Vogtland region on the German/Czech border, in which larger events were followed by a burst of seismicity, as in a normal aftershock sequence. Some of the arguments that have been advanced to explain the Vogtland swarm as seismicity induced by fluid injection apply to Rotoehu, but there is no direct evidence of fluid involvement. The Matata sequence appears to have a continuing trigger mechanism, either a slow injection of fluid, or a slow slip event, in an environment in which opening pore spaces prevent high overpressures developing. The Matata sequence occurred close to the area of the 1987 ML 6.3 Edgecumbe Earthquake, so exhibiting two extremes of seismic temporal pattern, namely mainshock–aftershock and a swarm with many events of similar magnitude, within a small area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号