首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68867篇
  免费   12810篇
  国内免费   16329篇
测绘学   4483篇
大气科学   8186篇
地球物理   16155篇
地质学   39224篇
海洋学   11072篇
天文学   2616篇
综合类   4390篇
自然地理   11880篇
  2024年   228篇
  2023年   662篇
  2022年   1812篇
  2021年   2093篇
  2020年   2261篇
  2019年   2932篇
  2018年   2645篇
  2017年   2910篇
  2016年   3038篇
  2015年   3231篇
  2014年   4036篇
  2013年   4407篇
  2012年   4213篇
  2011年   4488篇
  2010年   3720篇
  2009年   4555篇
  2008年   4545篇
  2007年   4853篇
  2006年   4696篇
  2005年   4222篇
  2004年   3936篇
  2003年   3736篇
  2002年   3323篇
  2001年   2879篇
  2000年   2715篇
  1999年   2420篇
  1998年   2039篇
  1997年   1886篇
  1996年   1702篇
  1995年   1408篇
  1994年   1431篇
  1993年   1205篇
  1992年   921篇
  1991年   666篇
  1990年   550篇
  1989年   464篇
  1988年   338篇
  1987年   227篇
  1986年   146篇
  1985年   111篇
  1984年   55篇
  1983年   43篇
  1982年   47篇
  1981年   42篇
  1980年   24篇
  1979年   32篇
  1978年   40篇
  1977年   24篇
  1975年   4篇
  1954年   24篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
3.
ABSTRACT

The purpose of this study is to examine local level spatiotemporal rainfall and temperature variability in drought-prone districts of rural Sidama, Central Rift Valley region of Ethiopia. The study used 129 gridded monthly rainfall and temperature data of 32 years (1983–2014). The gridded rainfall and temperature records were encoded into GIS software and evaluated through different statistical and geospatial techniques. Mann-Kendal rank test and F distribution tests were used to test temporal and spatial statistical significance, respectively, of the data. The analysis revealed that Belg and Kiremt are the main rainfall seasons, constituting 81% of the annual rainfall. Although annual, Kiremt, and Belg rainfall amounts appear to have decreased over time, the decreasing trend is statistically significant only for Belg rainfall records. On the other hand, rainfall standard anomaly results indicated seven droughts of different magnitudes: one extreme, two severe, and four moderate. The study also revealed increasing temperature trends over the years under consideration that are statistically significant. The findings of this study on rainfall contradict other findings obtained around the study area. Thus, climate change adaptations need to focus on location-specific climate data analysis so that the intended adaptive interventions can be successful.  相似文献   
4.
5.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
6.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
7.
Kiacatoo Man, a large, rugged Aboriginal adult buried in the Lachlan riverine plains of southeastern Australia, was discovered in 2011. Laser‐ablation uranium series analysis on bone yielded a minimum age for the burial of 27.4 ± 0.4 ka (2σ). Single‐grain, optically stimulated luminescence ages on quartz sediment in which the grave had been dug gave a weighted mean age of 26.4 ± 1.5 ka (1σ). Luminescence samples from the grave infill and from sediment beneath the grave exhibit overdispersed dose distributions consistent with bioturbation or other disturbance, which has obscured the burial signal. The overlap between the minimum (U‐series) and maximum (luminescence) ages places the burial between 27.0 and 29.4 ka (2σ). Luminescence ages obtained from the channel belt of between 28 ± 2 and 25 ± 3 ka indicate that fluvial sedimentation was occurring before the Last Glacial Maximum, which is consistent with the broader geomorphic setting. Together, these results are internally and regionally consistent, and indicate that Kiacatoo Man was one of the more ancient individuals so far identified in Australia. His remains are important to our understanding of patterns of biological variation and other processes that have shaped people in the Murray‐Darling Basin through time. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
10.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号