首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地质学   1篇
自然地理   5篇
  2022年   1篇
  2014年   4篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
1736-2010年华南前汛期始日变化   总被引:1,自引:1,他引:0  
根据清代华南雨雪分寸记载的内容、特点,参照华南地区前汛期降水特征,提出了利用雨雪分寸记载重建华南前汛期开始时间的方法,重建了1736-1911 年福州与广州前汛期开始日期变化序列;并利用福州与广州(分别始于1953 和1952 年)逐日降水观测记录辨识了器测时期两地前汛期的逐年开始时间;据此分析了过去300 年华南前汛期开始日期的年-年代际变化特征。结果表明:1736-2010 年间,福州、广州两地前汛期开始时间平均为5 月第1 候;但存在显著的年际和年代际波动,其中重建时段(1736-1911 年)的主周期为2~3 年、准10 年和准40年,器测时段的主周期为2~3 年、准10 年和准22 年。在年际尺度,重建时段福州和广州前汛期开始时间最早的年份均为4 月第4 候,最晚的年份则分别为5 月第6 候和6 月第1 候;而器测时段两地前汛期开始时间的最早年、最晚年均为4 月第4 候和6 月第1 候。在年代际尺度,重建时段福州和广州相邻年代最大变幅分别为2.2 候和1.6 候;器测时段福州和广州相邻年代最大变幅则分别为2.5 候和2.4 候。  相似文献   
2.
The starting dates of the pre-summer rainy season during historical times(1736– 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2–3 years, 10 years, and 40 years were detected during the period 1736–1911, and of 2–3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953–2010 and Guangzhou during 1952–2010. The maximum difference between neighboring decades during 1736–1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively.  相似文献   
3.
The starting dates of the pre-summer rainy season during historical times (1736- 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2-3 years, 10 years, and 40 years were detected during the period 1736-1911, and of 2-3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953-2010 and Guangzhou during 1952-2010. The maximum difference between neighboring decades during 1736-1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively.  相似文献   
4.
利用清代雨雪分寸记录和现代器测资料,重建了成都1796—2015年分辨率为年的雨季降水量序列。结果表明,过去220 a间成都的平均雨季降水量为838 mm,19世纪20~40年代、80年代到20世纪10年代、20世纪30~40年代降水偏多,19世纪初到20年代、50~70年代、20世纪20年代、50年代到21世纪初降水偏少,并在1879—1880年发生了由少到多的明显突变;降水最多的10 a为1832年、1896年、1898年、1899年、1903年、1907年、1915年、1921年、1937年和1947年,最少的10 a为1814年、1838年、1865年、1868年、1869年、1872年、1930年、1939年、1970年和2002年。成都雨季降水量存在显著的50~75 a周期,和太平洋年代际振荡(Pacific Decadal Oscillation, PDO)指数在50~70 a信号上存在较强的负相关,且与上一年冬季至当年秋季北印度洋的全球海表温度(SST)及当年夏秋季赤道太平洋的SST也存在较强的负相关,SST偏暖(冷)时,雨季降水量往往偏少(多)。  相似文献   
5.
利用雨雪分寸重建福州前汛期雨季起始日期的方法研究   总被引:3,自引:0,他引:3  
阐述清代福州雨雪分寸记录的特点;并利用福州1961-2010年器测降水记录,分析福州3~7月降水特征,提出辨识福州前汛期雨季开始日期的指标。在此基础上,根据清代福州雨雪分寸记录的内容和形式,分类构建利用雨雪分寸辨识福州前汛期雨季起始日期的方法;依据日降雨分寸、降雨日期和强度、时段的降水日期(或时段起止日期)及降水日(次...  相似文献   
6.
The starting dates of the pre-summer rainy season during historical times (1736-1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2-3 years, 10 years, and 40 years were detected during the period 1736-1911, and of 2-3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953-2010 and Guangzhou during 1952-2010. The maximum difference between neighboring decades during 1736-1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号