首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2344篇
  免费   539篇
  国内免费   967篇
测绘学   55篇
大气科学   66篇
地球物理   931篇
地质学   1983篇
海洋学   341篇
天文学   11篇
综合类   122篇
自然地理   341篇
  2024年   1篇
  2023年   23篇
  2022年   58篇
  2021年   68篇
  2020年   98篇
  2019年   117篇
  2018年   129篇
  2017年   92篇
  2016年   132篇
  2015年   136篇
  2014年   162篇
  2013年   178篇
  2012年   179篇
  2011年   173篇
  2010年   167篇
  2009年   204篇
  2008年   205篇
  2007年   241篇
  2006年   249篇
  2005年   202篇
  2004年   186篇
  2003年   123篇
  2002年   103篇
  2001年   83篇
  2000年   87篇
  1999年   92篇
  1998年   77篇
  1997年   58篇
  1996年   29篇
  1995年   31篇
  1994年   35篇
  1993年   28篇
  1992年   28篇
  1991年   16篇
  1990年   11篇
  1989年   12篇
  1988年   9篇
  1987年   10篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有3850条查询结果,搜索用时 15 毫秒
1.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
2.
李雪梅 《干旱区地理》2019,42(1):180-186
绿洲城镇组群是新疆特殊区域形成的规模相对较小的单一中心空间自组织模式。运用城市中心性指数、城市经济联系模型和Theil系数对新疆八大绿洲城镇组群内部城镇中心性、经济联系及空间差异测度。结果显示:绿洲城镇组群内部的中心城市的中心性职能较强,周边城镇的中心性职能相对较弱,形成了单中心的空间自组织模式;绿洲城镇组群内部经济联系量和经济联系隶属度大小的排序一致,离中心城市的距离越近、经济发展水平越高,经济联系隶属度越高;近10 a年来绿洲城镇组群的整体空间差异一直在扩大,且呈现出继续扩大趋势。在此基础上,提出了建立区域合作协调机制、明确城镇组群发展方向、增强中心城市的辐射带动作用、实现产业合理分工以及构建制度保障体系促进绿洲城镇组群的协同发展。  相似文献   
3.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
4.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
The finite‐element formulation and integration algorithms developed in Part I are used to analyse a number of practical problems involving unsaturated and saturated soils. The formulation and algorithms perform well for all the cases analysed, with the robustness of the latter being largely insensitive to user‐defined parameters such as the number of coarse time steps and error control tolerances. The efficiency of the algorithms, as measured by the CPU time consumed, does not depend on the number of coarse time steps, but may be influenced by the error control tolerances. Based on the analyses presented here, typical values for the error control tolerances are suggested. It is also shown that the constitutive modelling framework presented in Part I can, by adjusting one constitutive equation and one or two material parameters, be used to simulate soils that expand or collapse upon wetting. Treating the suction as a strain variable instead of a stress variable proves to be an efficient and robust way of solving suction‐dependent plastic yielding. Moreover, the concept of the constitutive stress is a particularly convenient way of handling the transition between saturation and unsaturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
有限元法与伪谱法混合求解弹性波动方程   总被引:6,自引:0,他引:6  
在地震波场数值模拟中,有限差分法、有限元法和伪谱法都是常用的基本方法,但它们各有不同的适应性和优缺点,如有限差分法、有限元法都存在减弱网格频散和提高计算效率的矛盾,而伪谱法的网格频散小且计算效率高.有限差分法和伪谱法在处理地表结构复杂或地表剧烈起伏以及地下结构复杂的情况时存在较大的难度,而有限元法可较为理想地拟合起伏地表和任意弯曲界面,且可方便地处理自由边界条件和界面边界条件.尝试将有限元法和伪谱法相结合,形成地震波场数值模拟的一种混合方法,利用二者的优点,克服二者的缺点,达到既减弱网格频散又提高计算精度和效率的目的.并采用所谓的‘过度区域‘技术解决两种不同算法的衔接问题.模拟实例表明,给出的混合模拟方法不失为弹性波场数值模拟的一种有效方法.  相似文献   
8.
The accuracy of the computed stress distribution near the free surface of vertical slopes was evaluated in this study as a function of the element size, including aspect ratio. To accomplish this objective, a parametric study was carried out comparing stresses computed using the finite element method (FEM) to those obtained from a physical model composed of photoelastic material. The results of the study indicate a reasonable agreement between a gelatin model and the FEM model for shear stresses, and an overall good agreement between the two models for the principal stresses. For stresses along the top of the slope, the height of the element tends to be more important than width or aspect ratio, at least for aspect ratios up to 4. In all cases, the greatest difference between the two models occurs in the vicinity of the slope. Specifically, if H is defined as the slope height, an element height of H/10 appears to be adequate for the study of stresses deep within the slope, such as for typical embankment analyses. However, for cases where tensile stresses in the vicinity of the slope face which are critical, such as for the stability analysis of steep slopes, element heights as small as H/32, or higher‐order elements, are necessary. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
9.
10.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号