首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
地质学   2篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   
2.
Abstract

The Cadomian Dyje Batholith, in the foot–wall of the Variscan Moravian nappe pile, has been involved in Variscan ductile deformation. The Cadomian Brunovistulian rocks were obliquely underthrusted during Carboniferous dextral transpression.

Strain intensity is inversely proportional to the distance from the contact of the Variscan thrust front. The microstructures of deformed granodiorites and quartz–diorites show a characteristic zonality marked by relatively high temperature flow in the west (550–580 °C) characterized by dynamic recrystallization of feldspars and grain boundary migration recrystallization of quartz. The size of quartz grains decreases with decreasing strain towards the east. At the easternmost part of the autochthonous Dyje massif, fracturing of feldspar and subgrain rotation recrystallization of quartz predominate. Flow stress estimates calculated from recrystallized quartz grain size show a regional increase of stress intensity from the highly strained margin towards the less deformed core of the Dyje massif. This microstructural zonation is oblique with respect to the major thrust boundary and corresponds roughly to metamorphic isogrades. The microstructural zonation reflects underthrusting of the Brunovistulian domain below the Moldanubian nappe.

The main ductile tectonic event D1 is followed by a retrogressive brittle–ductile and brittle deformation D2. D2 results in the development of shear zones and faults superimposed on the D1 mylonite fabric. D2 is related to extension oblique to the D1 fabric, associated with detachment and the westward movement of the Moravian nappes. © Elsevier, Paris  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号