首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
地球物理   5篇
地质学   3篇
自然地理   1篇
  2020年   2篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
流域水文模型研究进展   总被引:7,自引:0,他引:7  
石教智  陈晓宏 《水文》2006,26(1):18-23
本文介绍了流域水文模型的分类,论述了流域水文模型基础理论——产汇流理论的发展及其自身的研究进展,探讨了流域水文模型的研究趋势和发展困境,并对未来做出了展望,以期能推进流域水文模型的研究。  相似文献   
2.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   
3.
Effectively estimating groundwater recharge is critical to manage water resources, especially in arid and semi-arid regions as impacted by intensive human activities and climate changes. Rare insights have been gained into groundwater recharge since direct observation is hard to carry out. Although several methods are currently available to estimate groundwater recharge, the estimated results may cover noticeable bias. The behaviours of different methods based on different conceptual frameworks and exhibiting different levels of complexity should be examined to estimate actual groundwater recharge. This study aims to assess the performance of four common methods to estimate groundwater recharge. For this end, large-scale lysimeters equipped with soil water content sensors and water table sensors were set up at a research site established in Guanzhong Basin of China. The data achieved by 1-year observation were employed to compare four estimation methods. As revealed from the results, the following findings are drawn. (a) Groundwater level fluctuation (GLF) method is simple, whereas its accuracy is determined by specific yield, and adopting a water balance method to estimate specific yield can considerably enhance the accuracy of GLF. (b) The calibrated numerical model can obtain the optimal result compared with the other methods, whereas long-term observation data are required for parameter calibration. (c) In the water balance method, the maximum entropy production (MEP) model and a practical method (estimating evaporation between two rainfall events) were used to calculate evaporation. As indicated by the results, water balance method combined with MEP is capable of obtaining more reliable results of groundwater recharge compared with the practical method. (d) With an analytical model based on linearized Richards' equation, accurate results can be achieved. What is more, the analytical model only needs the measurement of soil moisture near the surface. The limitation of this method is that it is difficult to determine the maximal water flux. The mentioned findings are of critical implications to the management and sustainable development of groundwater.  相似文献   
4.
Comparing models of debris-flow susceptibility in the alpine environment   总被引:12,自引:3,他引:9  
Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables.Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility.Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.  相似文献   
5.
流域水文与地貌特征关系研究的回顾与展望   总被引:3,自引:0,他引:3       下载免费PDF全文
揭示水文过程与地貌过程相互作用的定量关系是水文学家长期追求的目标,也是新国际水文10年PUB计划的重要内容之一。论述了建立这两者定量关系的统计综合途径和具有物理基础途径的思路方法与主要特点,述评一个多世纪以来,尤其是近30年来国外学者在这方面所作的研究,介绍了作者近年来在这方面所做的工作。  相似文献   
6.
Abstract

The use of a physically-based hydrological model for streamflow forecasting is limited by the complexity in the model structure and the data requirements for model calibration. The calibration of such models is a difficult task, and running a complex model for a single simulation can take up to several days, depending on the simulation period and model complexity. The information contained in a time series is not uniformly distributed. Therefore, if we can find the critical events that are important for identification of model parameters, we can facilitate the calibration process. The aim of this study is to test the applicability of the Identification of Critical Events (ICE) algorithm for physically-based models and to test whether ICE algorithm-based calibration depends on any optimization algorithm. The ICE algorithm, which uses the data depth function, was used herein to identify the critical events from a time series. Low depth in multivariate data is an unusual combination and this concept was used to identify the critical events on which the model was then calibrated. The concept is demonstrated by applying the physically-based hydrological model WaSiM-ETH on the Rems catchment, Germany. The model was calibrated on the whole available data, and on critical events selected by the ICE algorithm. In both calibration cases, three different optimization algorithms, shuffled complex evolution (SCE-UA), parameter estimation (PEST) and robust parameter estimation (ROPE), were used. It was found that, for all the optimization algorithms, calibration using only critical events gave very similar performance to that using the whole time series. Hence, the ICE algorithm-based calibration is suitable for physically-based models; it does not depend much on the kind of optimization algorithm. These findings may be useful for calibrating physically-based models on much fewer data.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Singh, S.K., Liang, J.Y., and Bárdossy, A., 2012. Improving calibration strategy of physically-based model WaSiM-ETH using critical events. Hydrological Sciences Journal, 57 (8), 1487–1505.  相似文献   
7.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   
8.
— Shallow landslides are often linked to high magnitude rainstorms. Research has attempted to establish threshold rainfall totals that trigger shallow landslides, based mainly on field evidence. Complications arise because not all regolith has the same hydrological behaviour, and research frequently fails to take this into account. This paper uses a combination of field and modelling approaches to explore the triggering rainfall thresholds for shallow failures in deforested hill country of New Zealand. It emphasises the role of variations in regolith hydrology, focussing on unsaturated and saturated zone responses. By using a modelling approach, detailed variations in pore pressure (positive and negative) responses are investigated, developing ideas initially derived from field evidence. This paper defines and develops earlier research that establishes values for maximum and minimum probability thresholds for shallow landslides, and provides a more generalised model that can be applied more widely. Hydrological mechanisms for shallow landslides are investigated in greater detail than previously possible using a Combined Hydrology And Stability Model (CHASM).Received: 20 August 2001  相似文献   
9.
分布式水文模型构建理论与方法述评   总被引:16,自引:0,他引:16       下载免费PDF全文
回顾了分布式水文模型的发展历程,分析总结了分布式水文模型的构建理论与方法,并对其关键内核——“物理基础”的含义做了深入而新颖的分析。分析了两类当前比较活跃的模型——分布式物理模型与分布式概念性模型中存在的问题及发展前景,并探讨了综合二者之长的具有物理基础的松散型分布式水文模型的构建思路,以及学者们期待中的基于确定性与随机性耦合的分布式水文模型。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号