首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   6篇
  国内免费   1篇
地球物理   1篇
地质学   16篇
海洋学   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 734 毫秒
1.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence.  相似文献   
2.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   
3.
The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal–deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present‐day Baram Delta Province, suggests a ‘storm‐flood’ depositional model comprising two distinct periods: (i) fair‐weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon‐driven storm periods are characterized by increased wave‐energy and offshore‐directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm precipitation (‘storm‐floods’). The modern equivalent environment has the following characteristics: (i) humid‐tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone‐dominated hinterland; (iv) multiple independent, small to moderate‐sized (102 to 105 km2) drainage basins; (v) predominance of river‐mouth bypassing; and (vi) supply‐dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier‐upward successions (metre to decametre‐scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre‐scale silty laminae; (ii) heterolithic sandstone–mudstone alternations (centimetre to metre‐scale); and (iii) sharp‐based, swaley cross‐stratified sandstone beds and bedsets (metre to decimetre‐scale). Gutter casts (decimetre to metre‐scale) are widespread, they are filled with swaley cross‐stratified sandstone and their long axes are oriented perpendicular to the palaeo‐shoreline. The gutter casts and other associated waning‐flow event beds suggest that erosion and deposition was controlled by high‐energy, offshore‐directed, oscillatory‐dominated, sediment‐laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m Ma−1), in a ‘storm‐flood’‐dominated environment, resulted in a highly efficient and effective offshore‐directed sediment transport system.  相似文献   
4.
Shelf ridges are sedimentary bodies formed on the continental shelf due to transgressive reworking (tidal or storm) of lowstand deposits. Common on modern shelves, they are under‐represented in the geological record due to a lack of recognition criteria and facies model. This article proposes a new facies and architectural model for shelf ridges, linked to their inception–evolution–abandonment cycle and the process regime of the basin. The model is mainly based on new outcrop data and interpretations from three sandstone bodies of the Almond Formation, an overall transgressive interval during the infill of the Campanian Western Interior Seaway. Building from the case study, and ancient and modern examples, six characteristics are proposed for the recognition of ancient shelf ridges. Shelf ridges: (i) are encased between thick marine mudstone intervals; (ii) have a basal unconformity that erodes into marine muds or into the remnants of a previous shoreline; (iii) have a non‐erosional upper boundary that transitions into marine muds; (iv) are characterized by clean and well‐sorted sandstones, often cross‐bedded; (v) contain fully marine ichnofauna; and (vi) present compound architectures with large accretion surfaces and lower order structures. Although shelf ridges have been described in previous studies as generated exclusively by either tidal or storm currents, it is clear, from modern examples and the case study, that these two processes can be recorded and preserved in a single shelf ridge. The stratigraphy of these sandstone bodies is therefore much more complex than previously recognized, bearing the signature of changing tidal and storm intensity through time. Because they are developed during transgressions, shelf ridges are commonly subject to strong changes in process regime as sea‐level changes can easily affect the oceanographic conditions and the morphology of the basin. For this reason, shelf ridges can provide the best record of shelf process variability during transgressions.  相似文献   
5.
Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms.

Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999–2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000–2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999–2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer.

A northeast storm on March 5–6, 2001, resulted in currents in excess of 1 m s−1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months.  相似文献   

6.
《Sedimentology》2018,65(5):1731-1760
Many shoreface sandstone reservoirs host significant hydrocarbon volumes within distal intervals of interbedded sandstones and mudstones. Hydrocarbon production from these reservoir intervals depends on the abundance and proportion of sandstone beds that are connected by erosional scours, and on the lateral extent and continuity of interbedded mudstones. Cliff‐face exposures of the Campanian ‘G2’ parasequence, Grassy Member, Blackhawk Formation in the Book Cliffs of east‐central Utah, USA , allow detailed characterization of 128 erosional scours within such interbedded sandstones and mudstones in a volume of 148 m length, 94 m width and 15 m height. The erosional scours have depths of up to 1·1 m, apparent widths of up to 15·1 m and steep sides (up to 35°) that strike approximately perpendicular (N099 ± 36°) to the local north–south palaeoshoreline trend. The scours have limited lateral continuity along strike and down dip, and a relatively narrow range of apparent aspect ratio (apparent width/depth), implying that their three‐dimensional geometry is similar to non‐channelized pot casts. There is no systematic variation in scour dimensions, but ‘scour density’ is greater in amalgamated (conjoined) sandstone beds over 0·5 m thick, and increases upward within vertical successions of upward‐thickening conjoined sandstone beds. There is no apparent organization of the overall lateral distribution of scours, although localized clustering implies that some scours were re‐occupied during multiple erosional events. Scour occurrence is also associated with locally increased amplitude and laminaset thickness of hummocky cross‐stratification in sandstone beds. The geometry, distribution and infill character of the scours imply that they were formed by storm‐generated currents coincident with riverine sediment influx (‘storm floods’). The erosional scours increase the vertical and lateral connectivity of conjoined sandstone beds in the upper part of upward‐thickening sandstone bed successions, resulting in increased effective vertical and horizontal permeability of such intervals.  相似文献   
7.
Locally exposed Middle to Upper Eocene conglomerates in the western part of the Cenozoic Thrace Basin are interpreted as products of continuous marine erosion of a rocky coast (consisting of Lower Cretaceous carbonates) and subsequent redeposition of the land‐derived limestone material in a wave‐dominated nearshore setting during a prolonged transgression. Contemporaneous biological activity in the warm‐temperate marine environment contributed to the accumulation of mixed coarse‐grained clastic–carbonate sediments on the upper shoreface. The formation of a relatively thick sedimentary succession was favoured by the interplay of several controlling factors as only shoreface deposits were preserved in the rock record. The results may help to elucidate the evolution of the hydrocarbon‐bearing Thrace Basin and to assist with the regional correlation of its basal deposits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   
9.
以沉积学和高分辨率层序地层学理论为基础,通过薄片、扫描电镜观察、测井和地球化学分析等手段,对珠江口盆地惠州凹陷A区块珠江组下段和珠海组滨岸—潮汐沉积储层岩性和物性特征进行研究,该区珠海组以潮汐沉积为主,岩性主要为岩屑质长石砂岩;珠江组下段以滨岸沉积为主,岩性主要为岩屑质亚长石砂岩,西部滨岸沉积发育,岩性较纯,东部潮汐沉积发育,砂泥混杂。储层孔隙类型以原生粒间孔为主,其中西部原生孔隙所占比例较东部高,西部地区物性较东部好,珠江组下段滨岸沉积物性较珠海组潮汐沉积高。结合成岩作用分析,认为该区储层物性主控因素为基准面旋回格架内的沉积环境,同时针对滨岸和潮汐沉积体系,由前滨—上临滨—潮间潮砂坪—下临滨—潮下潮道—潮下潮砂坝—潮间混合坪—潮间潮道—潮上泥坪物性逐渐变差,且滨岸砂岩物性优于潮汐相的。  相似文献   
10.
Shoreface architecture, evolution (mid-Holocene to present) and depths of transgressive ravinement were examined from Sabine Pass, at the Texas–Louisiana border, to South Padre Island, near the Texas–Mexico border, using 30 shoreface transects. Shoreface transects extend out to 16-m water depth, each created from an echo-sounding profile and, on average, seven sediment cores. The shoreface is composed of three broad sedimentological facies: the upper shoreface, composed almost entirely of sand; the proximal lower shoreface, composed of sand with thickly to medium-bedded (50–10 cm) mud; and the distal lower shoreface, composed dominantly of mud with medium- to thinly bedded (20–3 cm) sand. Shoreface architecture and evolution is extremely variable along the Texas coast. Shoreface gradients increase from 2·25 m km–1 in east Texas to 3·50 m km–1 in south Texas. Shoreface sands coarsen towards south Texas. East and south Texas shoreface deposits are thin and retrograding whereas central Texas shoreface deposits are thicker and prograding. Central Texas is characterized by stacked shoreface successions, whereas in east Texas, lower shoreface sands are preserved only in offshore banks. Preservation of shoreface deposits is low in south Texas. Although eustatic fluctuations and accommodation space have a strong impact on overall mid-Holocene to present shoreface evolution and preservation potential, along-strike variations in sediment supply and wave energy are the main factors controlling shoreface architecture. The transgressive ravinement surface varies from –6 to –15 m along the Texas coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号