首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2013年   1篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Gold and copper concentrations were determined in natural pyrite by near‐infrared femtosecond LA‐ICP‐QMS, using both sulfide reference materials (pyrrhotite Po‐726 and in‐house natural chalcopyrite Cpy‐RM) and NIST SRM 610 as external calibrators. Firstly, using NIST SRM 610 as the external calibrator, we calculated the Au concentration in Po‐726 and the Cu concentration in Cpy‐RM. The calculated concentration averages for Au and Cu were similar to the values published for Po‐726 and Cpy‐RM, respectively. Secondly, we calculated Au and Cu concentrations taking NIST SRM 610 as an unknown sample and using Po‐726 and Cpy‐RM as external calibrators. Again, the average values obtained closely reflected the preferred concentrations for NIST SRM 610. Finally, we calculated Au and Cu concentrations in natural pyrite using sulfide and silicate reference materials as external calibrators. In both cases, calculated concentrations were very similar, independent of the external calibrator used. The aforementioned data, plus the fact that we obtained very small differences in relative sensitivity values (percentage differences are between 5% and 17% for 57Fe, 63Cu and 197Au) on analyses of silicate and sulfide RMs, indicate that there were no matrix effects related to the differences in material composition. Thus, it is possible to determine Au and Cu in natural sulfides using NIST silicate glasses as an external calibrator.  相似文献   
2.
High spatial resolution multiple sulfur isotope studies undertaken by multi‐collector secondary ion mass spectrometry (SIMS) commonly use well‐characterised sulfide reference materials that do not (or are assumed not to) exhibit mass‐independent fractionation in 33S and 36S, taking advantage of the three‐isotope plot to evaluate the extent of such fractionation in unknown targets. As a result, few studies to date have used a mass independently fractionated reference sulfide to demonstrate accuracy of measurement and/or data reduction procedures. This article evaluates two mass independently fractionated sulfides, a pyrite from the 3.7 Ga Isua greenstone belt and a pyrrhotite from a 2.7 Ga gold deposit in Minas Gerais, Brazil, which may be used to provide additional confidence in the obtained multiple sulfur isotope data. Additionally, the article presents a method for measuring quadruple sulfur isotopes by SIMS at a comparable spatial and volume resolution to that typically employed for triple sulfur isotopes. This method has been applied to the Isua pyrite as well as to a sample of 2.5 Ga pyrite from the Campbellrand, Transvaal, South Africa, previously investigated using SIMS for triple sulfur isotopes, illustrating its potential for quadruple sulfur investigations.  相似文献   
3.
The mattes resulting from lead smelting have been studied in order to determine the distribution of heavy metals and metalloids in primary phases. The chemical analysis (EPMA) revealed the presence of various metals (Pb, Sb, Cu), sulphides (galena, wurtzite, pyrrhotite, bornite, digenite, cubanite), arsenides (koutekite, löllingite) and other complex intermetallic compounds. Extreme saturation of the initial matte melt in heavy metals and metalloids as well as a relatively rapid cooling regime are responsible for numerous elemental substitutions in the crystal structures of all the involved phases. To cite this article: V. Ettler, Z. Johan, C. R. Geoscience 335 (2003).  相似文献   
4.
The Bou-Dahar PbZn Mississippi Valley deposits located in the eastern part of the High Atlas Range (Morocco) are hosted by a Liassic reefal complex. Fluid inclusion and ‘crush-leach’ data show that two distinct fluids were involved in the mineralisation deposition: a warmer, more saline fluid (180?°C, >25wt% NaCl equivalent) and a cooler, less saline fluid (70?°C, 16 wt% equivalent NaCl). Mixing of these two fluids resulted in the precipitation of the ore. The solute composition of the ore-forming brine suggests that the MVT mineralising fluids were probably a mixture of halite-dissolution fluids and evaporated seawater. To cite this article: S. Adil et al., C. R. Geoscience 336 (2004).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号